48 research outputs found

    Experimental test of an entropic measurement uncertainty relation for arbitrary qubit observables

    Full text link
    A tight information-theoretic measurement uncertainty relation is experimentally tested with neutron spin-1/2 qubits. The noise associated to the measurement of an observable is defined via conditional Shannon entropies and a tradeoff relation between the noises for two arbitrary spin observables is demonstrated. The optimal bound of this tradeoff is experimentally obtained for various non-commuting spin observables. For some of these observables this lower bound can be reached with projective measurements, but we observe that, in other cases, the tradeoff is only saturated by general quantum measurements (i.e., positive-operator valued measures), as predicted theoretically.Comment: 6 pages, 3 figure

    Experimental Test of Entropic Noise-Disturbance Uncertainty Relations for Three-Outcome Qubit Measurements

    Full text link
    Information-theoretic uncertainty relations formulate the joint immeasurability of two non-commuting observables in terms of information entropies. The trade-off of the accuracy in the outcome of two successive measurements manifests in entropic noise-disturbance uncertainty relations. Recent theoretical analysis predicts that projective measurements are not optimal, with respect to the noise-disturbance trade-offs. Therefore the results in our previous letter [PRL 115, 030401 (2015)] are outperformed by general quantum measurements. Here, we experimentally test a tight information-theoretic measurement uncertainty relation for three-outcome positive-operator valued measures (POVM), using neutron spin-1/2 qubits. The obtained results violate the lower bound for projective measurements as theoretically predicted.Comment: 14 pages, 14 figure

    Spin - Rotation Coupling Observed in Neutron Interferometry

    Full text link
    Einstein's theory of general relativity and quantum theory form the two major pillars of modern physics. However, certain inertial properties of a particle's intrinsic spin are inconspicuous while the inertial properties of mass are well known. Here, by performing a neutron interferometric experiment, we observe phase shifts arising as a consequence of the spin's coupling with the angular velocity of a rotating magnetic field. The resulting phase shifts linearly depend on the frequency of the rotation of the magnetic field. Our results agree well with the predictions derived from the Pauli - Schr\"odinger equation

    Neutron optical test of completeness of quantum root-mean-square errors

    Full text link
    One of the major problems in quantum physics has been to generalize the classical root-mean-square error to quantum measurements to obtain an error measure satisfying both soundness (to vanish for any accurate measurements) and completeness (to vanish only for accurate measurements). A noise-operator based error measure has been commonly used for this purpose, but it has turned out incomplete. Recently, Ozawa proposed a new definition for a noise-operator based error measure to be both sound and complete. Here, we present a neutron optical demonstration for the completeness of the new error measure for both projective (or sharp) as well as generalized (or unsharp) measurements.Comment: 7 pages, 4 figures and Supplementary Informatio
    corecore