6 research outputs found

    Oxytocin Normalizes Approach-Avoidance Behavior in Women With Borderline Personality Disorder

    Get PDF
    Background: Interpersonal deficits are a core symptom of borderline personality disorder (BPD), which could be related to increased social threat sensitivity and a tendency to approach rather than avoid interpersonal threats. The neuropeptide oxytocin has been shown to reduce threat sensitivity in patients with BPD and to modify approach–avoidance behavior in healthy volunteers. Methods: In a randomized, double-blind placebo-controlled between-subject design, 53 unmedicated women with BPD and 61 healthy women participated in an approach–avoidance task 75 min after intranasal substance administration (24 IU of oxytocin or placebo). The task assesses automatic approach–avoidance tendencies in reaction to facial expressions of happiness and anger. Results: While healthy participants responded faster to happy than angry faces, the opposite response pattern, that is, faster reactions to angry than happy faces, was found in patients with BPD. In the oxytocin condition, the “congruency effect” (i.e., faster avoidance of facial anger and approach of facial happiness vice versa) was increased in both groups. Notably, patients with BPD exhibited a congruency effect toward angry faces in the oxytocin but not in the placebo condition. Conclusions: This is the second report of deficient fast, automatic avoidance responses in terms of approach behavior toward interpersonal threat cues in patients with BPD. Intranasally administered oxytocin was found to strengthen avoidance behavior to social threat cues and, thus, to normalize fast action tendencies in BPD. Together with the previously reported oxytocinergic reduction of social threat hypersensitivity, these results suggest beneficial effects of oxytocin on interpersonal dysfunctioning in BPD

    Overproduction of Ristomycin A by Activation of a Silent Gene Cluster in Amycolatopsis japonicum MG417-CF17

    No full text
    The emergence of antibiotic-resistant pathogenic bacteria within the last decades is one reason for the urgent need for new antibacterial agents. A strategy to discover new anti-infective compounds is the evaluation of the genetic capacity of secondary metabolite producers and the activation of cryptic gene clusters (genome mining). One genus known for its potential to synthesize medically important products is Amycolatopsis. However, Amycolatopsis japonicum does not produce an antibiotic under standard laboratory conditions. In contrast to most Amycolatopsis strains, A. japonicum is genetically tractable with different methods. In order to activate a possible silent glycopeptide cluster, we introduced a gene encoding the transcriptional activator of balhimycin biosynthesis, the bbr gene from Amycolatopsis balhimycina (bbr(Aba)), into A. japonicum. This resulted in the production of an antibiotically active compound. Following whole-genome sequencing of A. japonicum, 29 cryptic gene clusters were identified by genome mining. One of these gene clusters is a putative glycopeptide biosynthesis gene cluster. Using bioinformatic tools, ristomycin (syn. ristocetin), a type III glycopeptide, which has antibacterial activity and which is used for the diagnosis of von Willebrand disease and Bernard-Soulier syndrome, was deduced as a possible product of the gene cluster. Chemical analyses by high-performance liquid chromatography and mass spectrometry (HPLC-MS), tandem mass spectrometry (MS/MS), and nuclear magnetic resonance (NMR) spectroscopy confirmed the in silico prediction that the recombinant A. japonicum/pRM4-bbr(Aba) synthesizes ristomycin A

    Fertilized graminoids intensify negative drought effects on grassland productivity

    No full text
    Abstract Droughts can strongly affect grassland productivity and biodiversity, but responses differ widely. Nutrient availability may be a critical factor explaining this variation, but is often ignored in analyses of drought responses. Here, we used a standardized nutrient addition experiment covering 10 European grasslands to test if full-factorial nitrogen, phosphorus, and potassium addition affected plant community responses to inter-annual variation in drought stress and to the extreme summer drought of 2018 in Europe. We found that nutrient addition amplified detrimental drought effects on community aboveground biomass production. Drought effects also differed between functional groups, with a negative effect on graminoid but not forb biomass production. Our results imply that eutrophication in grasslands, which promotes dominance of drought-sensitive graminoids over forbs, amplifies detrimental drought effects. In terms of climate change adaptation, agricultural management would benefit from taking into account differential drought impacts on fertilized versus unfertilized grasslands, which differ in ecosystem services they provide to society
    corecore