116 research outputs found

    Organizational Culture in Wisconsin Large Law Firms

    Get PDF
    Culture can be defined as the collective programming of the mind which distinguishes one group or category of people from another. Organizational culture is an idea in the field of organizational studies and management which describes the psychology, attitudes, experiences, beliefs and values (personal and cultural values) of an organization. There are many studies on Organizational Culture applied to corporations. There are very few studies of Organizational Culture applied to law firms. This is a study of Organizational Culture in Wisconsin Large Law Firms. This study does not attempt to define specific cultural knowledge of large Wisconsin law firms but instead assesses whether an organizational culture is positive or negative. The hypothesis of this study is as follows. The practice of law is now the business of law. Corporate clients are more sophisticated and in today’s economy have more leverage when hiring large law firms. At the same time technology has flattened the playing field making law firms more similar than different. There is a convergence between large law firms and the output has been commoditized. Law firms with identifiable positive cultures will thrive, while those firms that have a negative culture are less likely to survive. As law firms adapt to the new normal they are undergoing change. Studies show that organizations with a positive culture adapt to change better than organizations with a negative culture. The Organizational Culture Inventory® (OCI®) is the most widely used and thorough researched tool for measuring organizational culture in the world. The inventory presents a list of 120 statements which describe some of the behaviors that might be expected or implicitly required of members of organizations. This quantitative survey was deployed to the 20 largest law firms in Wisconsin. Survey participants included law firm administrators, managing partners and practice group leaders. The results of the survey showed that the overall law firm culture in Wisconsin is positive. Further study is suggested to understand organizational culture within individual law firms as well as law firms outside Wisconsin

    Efficient design of piezoresitive sensors based on carbon black conductive composites

    Get PDF
    Flexible and stretchable sensors are widely investigated taking into account their potential for wearable electronics, such as electronic skin, healthcare monitoring, human-machine interfaces, and soft robotics. In this contribution, highly sensitive conductive polymer composites (CPCs) for piezoresistive sensing are summarized, considering a straightforward manufacturing process based on extrusion of thermoplastic polyurethane (TPU) and/or olefin block copolymer (OBC), carbon black (CB), and additionally polyethylene-octene elastomer (POE) grafted with maleic anhydride (POE-g-MA). The design of the formulation variables is successfully performed to enable both low and high strain sensing, as highlighted by both static and dynamic testing

    Efficient design of piezoresistive sensors based on carbon black conductive composites

    Get PDF
    Flexible and stretchable sensors are widely investigated taking into account their potential for wearable electronics, such as electronic skin, healthcare monitoring, human-machine interfaces, and soft robotics. In this contribution, highly sensitive conductive polymer composites (CPCs) for piezoresistive sensing are summarized, considering a straightforward manufacturing process based on extrusion of thermoplastic polyurethane (TPU) and/or olefin block copolymer (OBC), carbon black (CB), and additionally polyethylene-octene elastomer (POE) grafted with maleic anhydride (POE-g-MA). The design of the formulation variables is successfully performed to enable both low and high strain sensing, as highlighted by both static and dynamic testing

    IPv6 Mesh over BLUETOOTH(R) Low Energy using IPSP

    Get PDF
    RFC 7668 describes the adaptation of 6LoWPAN techniques to enable IPv6 over Bluetooth low energy networks that follow the star topology. However, recent Bluetooth specifications allow the formation of extended topologies as well. This document specifies mechanisms that are needed to enable IPv6 mesh over Bluetooth Low Energy links established by using the Bluetooth Internet Protocol Support Profile. This document does not specify the routing protocol to be used in an IPv6 mesh over Bluetooth LE links.Preprin

    Optimisation of the adhesion of polypropylene-based materials during extrusion-based additive manufacturing

    Get PDF
    Polypropylene (PP) parts produced by means of extrusion-based additive manufacturing, also known as fused filament fabrication, are prone to detaching from the build platform due to their strong tendency to shrink and warp. Apart from incorporating high volume fractions of fillers, one approach to mitigate this issue is to improve the adhesion between the first deposited layer and the build platform. However, a major challenge for PP is the lack of adhesion on standard platform materials, as well as a high risk of welding on PP-based platform materials. This study reports the material selection of build platform alternatives based on contact angle measurements. The adhesion forces, investigated by shear-off measurements, between PP-based filaments and the most promising platform material, an ultra-high-molecular-weight polyethylene (UHMW-PE), were optimised by a thorough parametric study. Higher adhesion forces were measured by increasing the platform and extrusion temperatures, increasing the flow rate and decreasing the thickness of the first layer. Apart from changes in printer settings, an increased surface roughness of the UHMW-PE platform led to a sufficient, weld-free adhesion for large-area parts of PP-based filaments, due to improved wetting, mechanical interlockings, and an increased surface area between the two materials in contact

    Evolution of nano-pores during annealing of technically pure molybdenum sheet produced from different sintered formats

    Get PDF
    Molybdenum is a refractory metal with no phase transformation in the solid state and a high melting point. It is therefore an excellent structural material for various high temperature applications. Especially in this field of operation, significant creep resistance is essential. To achieve this, a microstructure with grains in the range of millimeters is desired. However, as demonstrated in the present study, the onset temperature for secondary recrystallization, which would lead to a beneficial grain size, is among other things dependent on the initial dimensions of the sintered part. One possible reason for the different microstructural evolutions is the influence of residual pores in sub-micrometer size. Sheets were thus fabricated via three different production routes employing the same initial Mo powder to exclude chemical variation as an influencing factor. The samples were investigated by in-situ small-angle X-ray scattering at a synchrotron radiation source with two different heating rates. Additionally, selected annealed samples were studied ex-situ with high energy X-rays. The apparent volume fraction of pores is compared to a volatilization model for the vaporization of typical accompanying elements and the induced thermal expansion

    3D printing conditions determination for feedstock used in fused filament fabrication (FFF) of 17-4PH stainless steel parts

    Get PDF
    Fused filament fabrication combined with debinding and sintering could be an economical process for 3D printing of metal parts. In this study, compounding, filament making and FFF processing of a feedstock material containing 55 vol. % of 17-4PH stainless steel powder and a multicomponent binder system are presented. For the FFF process, processing windows of the most significant parameters, such as range of extrusion temperatures (210 to 260 °C), flow rate multipliers (150 to 200 %), and 3D printing speed multipliers (60 to 100 %) were determined for a constant printing bed temperature of 60 °C
    corecore