39 research outputs found

    Rapid refolding of a proline-rich all-beta-sheet fibronectin type III module.

    Full text link

    By Any Other Name: Heterologous Replacement of the Escherichia coli RNase P Protein Subunit Has In Vivo Fitness Consequences

    Get PDF
    Bacterial RNase P is an essential ribonucleoprotein composed of a catalytic RNA component (encoded by the rnpB gene) and an associated protein moiety (encoded by rnpA). We construct a system that allows for the deletion of the essential endogenous rnpA copy and for its simultaneous replacement by a heterologous version of the gene. Using growth rate as a proxy, we explore the effects on fitness of heterologous replacement by increasingly divergent versions of the RNase P protein. All of the heterologs tested complement the loss of the endogenous rnpA gene, suggesting that all existing bacterial versions of the rnpA sequence retain the elements required for functional interaction with the RNase P RNA. All replacements, however, exact a cost on organismal fitness, and particularly on the rate of growth acceleration, defined as the time required to reach maximal growth rate. Our data suggest that the similarity of the heterolog to the endogenous version — whether defined at the sequence, structure or codon usage level — does not predict the fitness costs of the replacement. The common assumption that sequence similarity predicts functional similarity requires experimental confirmation and may prove to be an oversimplification

    E9-Im9 Colicin DNase−Immunity Protein Biomolecular Association in Water: A Multiple-Copy and Accelerated Molecular Dynamics Simulation Study

    Get PDF
    Protein−protein transient and dynamic interactions underlie all biological processes. The molecular dynamics (MD) of the E9 colicin DNase protein, its Im9 inhibitor protein, and their E9-Im9 recognition complex are investigated by combining multiple-copy (MC) MD and accelerated MD (aMD) explicit-solvent simulation approaches, after validation with crystalline-phase and solution experiments. Im9 shows higher flexibility than its E9 counterpart. Im9 displays a significant reduction of backbone flexibility and a remarkable increase in motional correlation upon E9 association. Im9 loops 23−31 and 54−64 open with respect to the E9-Im9 X-ray structure and show high conformational diversity. Upon association a large fraction (∼20 nm2) of E9 and Im9 protein surfaces become inaccessible to water. Numerous salt bridges transiently occurring throughout our six 50 ns long MC-MD simulations are not present in the X-ray model. Among these Im9 Glu31−E9 Arg96 and Im9 Glu41−Lys89 involve interface interactions. Through the use of 10 ns of Im9 aMD simulation, we reconcile the largest thermodynamic impact measured for Asp51Ala mutation with Im9 structure and dynamics. Lys57 acts as an essential molecular switch to shift Im9 surface loop towards an ideal configuration for E9 inhibition. This is achieved by switching Asp60−Lys57 and Asp62−Lys57 hydrogen bonds to Asp51−Lys57 salt bridge. E9-Im9 recognition involves shifts of conformational distributions, reorganization of intramolecular hydrogen bond patterns, and formation of new inter- and intramolecular interactions. The description of key transient biological interactions can be significantly enriched by the dynamic and atomic-level information provided by computer simulations

    Plasma and cellular fibronectin: distinct and independent functions during tissue repair

    Get PDF
    Fibronectin (FN) is a ubiquitous extracellular matrix (ECM) glycoprotein that plays vital roles during tissue repair. The plasma form of FN circulates in the blood, and upon tissue injury, is incorporated into fibrin clots to exert effects on platelet function and to mediate hemostasis. Cellular FN is then synthesized and assembled by cells as they migrate into the clot to reconstitute damaged tissue. The assembly of FN into a complex three-dimensional matrix during physiological repair plays a key role not only as a structural scaffold, but also as a regulator of cell function during this stage of tissue repair. FN fibrillogenesis is a complex, stepwise process that is strictly regulated by a multitude of factors. During fibrosis, there is excessive deposition of ECM, of which FN is one of the major components. Aberrant FN-matrix assembly is a major contributing factor to the switch from normal tissue repair to misregulated fibrosis. Understanding the mechanisms involved in FN assembly and how these interplay with cellular, fibrotic and immune responses may reveal targets for the future development of therapies to regulate aberrant tissue-repair processes

    Magnetic relaxation in UCu4 + xAl8 - x

    No full text

    Conformational polymorphism of cyclosporin A.

    No full text
    BACKGROUND: Cyclosporin A (CsA) is a cyclic undecapeptide fungal metabolite with immunosuppressive properties, widely used in transplant surgery. It forms a tight complex with the ubiquitous 18 kDa cytosolic protein cyclophilin A (CypA). The conformation of CsA in this complex, as studied by NMR or X-ray crystallography, is very different from that of free CsA. Another, different conformation of CsA has been found in a complex with an antibody fragment (Fab). RESULTS: A detailed comparison of the conformations of experimentally determined structures of protein-bound CsA is presented. The X-ray and NMR structures of CsA-CypA complexes are similar. The Fab-bound conformation of CsA, as determined by X-ray crystallography, is significantly different from the cyclophilin-bound conformation. The protein-CsA interactions in both the Fab and CypA complexes involve five hydrogen bonds, and the buried CsA surface areas are 395 A2 and 300 A2, respectively. However, the CsA-protein interactions involve rather different side chain contacts in the two complexes. CONCLUSIONS: The structural results presented here are consistent with CypA recognizing and binding a population of CsA molecules which are in the required CypA-binding conformation. In contrast, the X-ray structures of the Fab complex with CsA suggest that in this case there is mutual adaptation of both receptor and ligand during complex formation
    corecore