1,563 research outputs found

    Environmental Impact on the Southeast Limb of the Cygnus Loop

    Full text link
    We analyze observations from the Chandra X-ray Observatory of the southeast knot of the Cygnus Loop supernova remnant. In this region, the blast wave propagates through an inhomogeneous environment. Extrinsic differences and subsequent multiple projections along the line of sight rather than intrinsic shock variations, such as fluid instabilities, account for the apparent complexity of the images. Interactions between the supernova blast wave and density enhancements of a large interstellar cloud can produce the morphological and spectral characteristics. Most of the X-ray flux arises in such interactions, not in the diffuse interior of the supernova remnant. Additional observations at optical and radio wavelengths support this account of the existing interstellar medium and its role in shaping the Cygnus Loop, and they demonstrate that the southeast knot is not a small cloud that the blast wave has engulfed. These data are consistent with rapid equilibration of electron and ion temperatures behind the shock front, and the current blast wave velocity v_{bw} approx 330 km/s. Most of this area does not show strong evidence for non-equilibrium ionization conditions, which may be a consequence of the high densities of the bright emission regions.Comment: To appear in ApJ, April 1, 200

    Density-Dependent Response of an Ultracold Plasma to Few-Cycle Radio-Frequency Pulses

    Full text link
    Ultracold neutral plasmas exhibit a density-dependent resonant response to applied radio-frequency (RF) fields in the frequency range of several MHz to hundreds of MHz for achievable densities. We have conducted measurements where short bursts of RF were applied to these plasmas, with pulse durations as short as two cycles. We still observed a density-dependent resonant response to these short pulses. However, the too rapid timescale of the response, the dependence of the response on the sign of the driving field, the response as the number of pulses was increased, and the difference in plasma response to radial and axially applied RF fields are inconsistent with the plasma response being due to local resonant heating of electrons in the plasma. Instead, our results are consistent with rapid energy transfer from collective motion of the entire electron cloud to electrons in high-energy orbits. In addition to providing a potentially more robust way to measure ultracold neutral plasma densities, these measurements demonstrate the importance of collective motion in the energy transport in these systems.Comment: 5 pages, 4 figure

    Electron Temperature of Ultracold Plasmas

    Full text link
    We study the evolution of ultracold plasmas by measuring the electron temperature. Shortly after plasma formation, competition between heating and cooling mechanisms drives the electron temperature to a value within a narrow range regardless of the initial energy imparted to the electrons. In agreement with theory predictions, plasmas exhibit values of the Coulomb coupling parameter Γ\Gamma less than 1.Comment: 4 pages, plus four figure

    Response of Turtlegrass to Natural and Reduced Light Regimes Under Conditions of Rhizome Isolation

    Get PDF
    To evaluate if rhizome integrity influenced the response of turtlegrass (Thalassia testudinum) shoots to experimental light reduction, we performed a field experiment in Perdido Bay, FL, from May to Oct. 2001. We used a factorial design, with light, rhizome integrity, and time as main factors. Light was reduced to about 40% with respect to ambient irradiance by means of a polyethylene mesh, and rhizomes along the external border of the 0.5-m2 experimental plots were severed with a knife at the beginning and middle of the experiment. Severing surrounding rhizomes had a significant (P \u3c .05) negative effect on net aboveground primary production (NAPP), but this was only apparent from June to July, and there were no significant severing effects on aboveground biomass. Shading showed negative effects through time on aboveground biomass and NAPP, although the differences were not significant. Time was significant for belowground biomass, NAPP, shoot density, and leaf length and width and there were significant time-by-shading interactions for NAPP, aboveground biomass, and density. We conclude that the results of turtlegrass shading studies done over several months during the peak of the growing season are not influenced to any large extent by whether rhizomes are intact or not, indicating that previous studies of the effects of shading on turtlegrass can be compared without bias

    Information-theoretic determination of ponderomotive forces

    Full text link
    From the equilibrium condition δS=0\delta S=0 applied to an isolated thermodynamic system of electrically charged particles and the fundamental equation of thermodynamics (dU=TdS(fdr)dU = T dS-(\mathbf{f}\cdot d\mathbf{r})) subject to a new procedure, it is obtained the Lorentz's force together with non-inertial terms of mechanical nature. Other well known ponderomotive forces, like the Stern-Gerlach's force and a force term related to the Einstein-de Haas's effect are also obtained. In addition, a new force term appears, possibly related to a change in weight when a system of charged particles is accelerated.Comment: 10 page

    Binaries and Globular Cluster Dynamics

    Get PDF
    We summarize the results of recent theoretical work on the dynamical evolution of globular clusters containing primordial binaries. Even a very small initial binary fraction (e.g., 10%) can play a key role in supporting a cluster against gravothermal collapse for many relaxation times. Inelastic encounters between binaries and single stars or other binaries provide a very significant energy source for the cluster. These dynamical interactions also lead to the production of large numbers of exotic systems such as ultracompact X-ray binaries, recycled radio pulsars, double degenerate systems, and blue stragglers. Our work is based on a new parallel supercomputer code implementing Henon's Monte Carlo method for simulating the dynamical evolution of dense stellar systems in the Fokker-Planck approximation. This new code allows us to calculate very accurately the evolution of a cluster containing a realistic number of stars (N ~ 10^5 - 10^6) in typically a few hours to a few days of computing time. The discrete, star-by-star representation of the cluster in the simulation makes it possible to treat naturally a number of important processes, including single and binary star evolution, all dynamical interactions of single stars and binaries, and tidal interactions with the Galaxy.Comment: 15 pages, to appear in `The Influence of Binaries on Stellar Population Studies', ed. D. Vanbeveren (Kluwer

    On the fraction of dark matter in charged massive particles (CHAMPs)

    Full text link
    From various cosmological, astrophysical and terrestrial requirements, we derive conservative upper bounds on the present-day fraction of the mass of the Galactic dark matter (DM) halo in charged massive particles (CHAMPs). If dark matter particles are neutral but decay lately into CHAMPs, the lack of detection of heavy hydrogen in sea water and the vertical pressure equilibrium in the Galactic disc turn out to put the most stringent bounds. Adopting very conservative assumptions about the recoiling velocity of CHAMPs in the decay and on the decay energy deposited in baryonic gas, we find that the lifetime for decaying neutral DM must be > (0.9-3.4)x 10^3 Gyr. Even assuming the gyroradii of CHAMPs in the Galactic magnetic field are too small for halo CHAMPs to reach Earth, the present-day fraction of the mass of the Galactic halo in CHAMPs should be < (0.4-1.4)x 10^{-2}. We show that redistributing the DM through the coupling between CHAMPs and the ubiquitous magnetic fields cannot be a solution to the cuspy halo problem in dwarf galaxies.Comment: 21 pages, 2 figures. To appear in JCA

    A supersymmetric model for triggering Supernova Ia in isolated white dwarfs

    Full text link
    We propose a model for supernovae Ia explosions based on a phase transition to a supersymmetric state which becomes the active trigger for the deflagration starting the explosion in an isolated sub-Chandrasekhar white dwarf star. With two free parameters we fit the rate and several properties of type Ia supernovae and address the gap in the supermassive black hole mass distribution. One parameter is a critical density fit to about 31073 \cdot 10^7 g/cc while the other has the units of a space time volume and is found to be of order 0.050.05\, Gyr RE3R_E^3 where RER_E is the earth radius. The model involves a phase transition to an exact supersymmetry in a small core of a dense star.Comment: 20 pages, 5 figures, expanded version to be published in Physical Review

    The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs

    Get PDF
    We identify the pressure--broadened red wings of the saturated potassium resonance lines at 7700 \AA as the source of anomalous absorption seen in the near-infrared spectra of Gliese 229B and, by extension, of methane dwarfs in general. This conclusion is supported by the recent work of Tsuji {\it et al.} 1999, though unlike them we find that dust need not be invoked to explain the spectra of methane dwarfs shortward of 1 micron. We find that a combination of enhanced alkali abundances due to rainout and a more realistic non-Lorentzian theory of resonant line shapes may be all that is needed to properly account for these spectra from 0.5 to 1.0 microns. The WFPC2 II measurement of Gliese 229B is also consistent with this theory. Furthermore, a combination of the blue wings of this K I resonance doublet, the red wings of the Na D lines at 5890 \AA, and, perhaps, the Li I line at 6708 \AA can explain in a natural way the observed WFPC2 RR band flux of Gliese 229B. Hence, we conclude that the neutral alkali metals play a central role in the near-infrared and optical spectra of methane dwarfs and that their lines have the potential to provide crucial diagnostics of brown dwarfs. We speculate on the systematics of the near-infrared and optical spectra of methane dwarfs, for a given mass and composition, that stems from the progressive burial with decreasing \teff of the alkali metal atoms to larger pressures and depths.Comment: Revised and accepted to Ap.J. volume 531, March 1, 2000, also available at http://jupiter.as.arizona.edu/~burrows/papers/BMS.p

    Universal Non-Gaussian Velocity Distribution in Violent Gravitational Processes

    Get PDF
    We study the velocity distribution in spherical collapses and cluster-pair collisions by use of N-body simulations. Reflecting the violent gravitational processes, the velocity distribution of the resultant quasi-stationary state generally becomes non-Gaussian. Through the strong mixing of the violent process, there appears a universal non-Gaussian velocity distribution, which is a democratic (equal-weighted) superposition of many Gaussian distributions (DT distribution). This is deeply related with the local virial equilibrium and the linear mass-temperature relation which characterize the system. We show the robustness of this distribution function against various initial conditions which leads to the violent gravitational process. The DT distribution has a positive correlation with the energy fluctuation of the system. On the other hand, the coherent motion such as the radial motion in the spherical collapse and the rotation with the angular momentum suppress the appearance of the DT distribution.Comment: 11 pages, 19 eps figures, RevTex, submitted to PRE, Revised version, minor change
    corecore