56 research outputs found
Drivers of population structure of the bottlenose dolphin (Tursiops truncatus) in the Eastern Mediterranean Sea
The drivers of population differentiation in oceanic high dispersal organisms, have been crucial for research in evolutionary biology. Adaptation to different environments is commonly invoked as a driver of differentiation in the oceans, in alternative to geographic isolation. In this study, we investigate the population structure and phylogeography of the bottlenose dolphin (Tursiops truncatus) in the Mediterranean Sea, using microsatellite loci and the entire mtDNA control region. By further comparing the Mediterranean populations with the well described Atlantic populations, we addressed the following hypotheses: (1) bottlenose dolphins show population structure within the environmentally complex Eastern Mediterranean Sea; (2) population structure was gained locally or otherwise results from chance distribution of preexisting genetic structure; (3) strong demographic variations within the Mediterranean basin have affected genetic variation sufficiently to bias detected patterns of population structure. Our results suggest that bottlenose dolphin exhibits population structures that correspond well to the main Mediterranean oceanographic basins. Furthermore, we found evidence for fine scale population division within the Adriatic and the Levantine seas. We further describe for the first time, a distinction between populations inhabiting pelagic and coastal regions within the Mediterranean. Phylogeographic analysis suggests that current genetic structure, results mostly from stochastic distribution of Atlantic genetic variation, during a recent postglacial expansion. Comparison with Atlantic mtDNA haplotypes, further suggest the existence of a metapopulation across North Atlantic/Mediterranean, with pelagic regions acting as source for coastal environments
Factors driving patterns and trends in strandings of small cetaceans
The incidence of cetacean strandings is expected to depend on a combination of factors, including the dis- tribution and abundance of the cetaceans, their prey, and causes of mortality (e.g. natural, fishery bycatch), as well as currents and winds which affect whether carcasses reach the shore. We investigated spatiotemporal patterns and trends in the numbers of strandings of three species of small cetacean in Galicia (NW Spain) and their relationships with meteoro- logical, oceanographic, prey abundance and fishing-related variables, aiming to disentangle the relationship that may exist between these factors, cetacean abundance and mor- tality off the coast. Strandings of 1166 common dolphins (Delphinus delphis), 118 bottlenose dolphins (Tursiops truncatus) and 90 harbour porpoises (Phocoena phocoena) during 2000–2013 were analysed. Generalised additive and generalised additive-mixed model results showed that the variables which best explained the pattern of strandings of the three cetacean species were those related with local ocean meteorology (strength and direction of the North– South component of the winds and the number of days with South-West winds) and the winter North Atlantic Oscil- lation Index. There were no significant relationships with indices of fishing effort or landings. Only bottlenose dolphin showed possible fluctuations in local abundance over the study period. There was no evidence of long-term trends in number of strandings in any of the species and their abun- dances were, therefore, considered to have been relatively stable during the study period.Versión del editor2,01
Accessibility analysis for automatic inspection in CMMs by using bounding volume hierarchies
Parasite Burden and CD36-Mediated Sequestration Are Determinants of Acute Lung Injury in an Experimental Malaria Model
Although acute lung injury (ALI) is a common complication of severe malaria, little is known about the underlying molecular basis of lung dysfunction. Animal models have provided powerful insights into the pathogenesis of severe malaria syndromes such as cerebral malaria (CM); however, no model of malaria-induced lung injury has been definitively established. This study used bronchoalveolar lavage (BAL), histopathology and gene expression analysis to examine the development of ALI in mice infected with Plasmodium berghei ANKA (PbA). BAL fluid of PbA-infected C57BL/6 mice revealed a significant increase in IgM and total protein prior to the development of CM, indicating disruption of the alveolar–capillary membrane barrier—the physiological hallmark of ALI. In contrast to sepsis-induced ALI, BAL fluid cell counts remained constant with no infiltration of neutrophils. Histopathology showed septal inflammation without cellular transmigration into the alveolar spaces. Microarray analysis of lung tissue from PbA-infected mice identified a significant up-regulation of expressed genes associated with the gene ontology categories of defense and immune response. Severity of malaria-induced ALI varied in a panel of inbred mouse strains, and development of ALI correlated with peripheral parasite burden but not CM susceptibility. Cd36−/− mice, which have decreased parasite lung sequestration, were relatively protected from ALI. In summary, parasite burden and CD36-mediated sequestration in the lung are primary determinants of ALI in experimental murine malaria. Furthermore, differential susceptibility of mouse strains to malaria-induced ALI and CM suggests that distinct genetic determinants may regulate susceptibility to these two important causes of malaria-associated morbidity and mortality
Preliminary evaluation of an MRI-based technique for displaying and quantifying bony deformities in cam-type femoroacetabular impingement
Optical probing for CNC machining of large parts made from fiber-reinforced polymer composite materials
- …
