4 research outputs found

    Path to AWAKE : evolution of the concept

    Get PDF
    This paper describes the conceptual steps in reaching the design of the AWAKE experiment currently under construction at CERN. We start with an introduction to plasma wakefield acceleration and the motivation for using proton drivers. We then describe the self-modulation instability - a key to an early realization of the concept. This is then followed by the historical development of the experimental design, where the critical issues that arose and their solutions are described. We conclude with the design of the experiment as it is being realized at CERN and some words on the future outlook. A summary of the AWAKE design and construction status as presented in this conference is given in Gschwendtner et al. [1]

    Proton beam defocusing in AWAKE: comparison of simulations and measurements

    No full text
    In 2017, AWAKE demonstrated the seeded self-modulation (SSM) of a 400 GeV proton beam from the Super Proton Synchrotron (SPS) at CERN. The angular distribution of the protons deflected due to SSM is a quantitative measure of the process, which agrees with simulations by the two-dimensional (axisymmetric) particle-in-cell code LCODE. Agreement is achieved for beam populations between 101110^{11} and 3×10113 \times 10^{11} particles, various plasma density gradients (20÷20%-20 \div 20\%) and two plasma densities (2×1014cm32\times 10^{14} \text{cm}^{-3} and 7×1014cm37 \times 10^{14} \text{cm}^{-3}). The agreement is reached only in the case of a wide enough simulation box (at least five plasma wavelengths)
    corecore