154 research outputs found

    New chemical evolution analytical solutions including environment effects

    Full text link
    In the last years, more and more interest has been devoted to analytical solutions, including inflow and outflow, to study the metallicity enrichment in galaxies. In this framework, we assume a star formation rate which follows a linear Schmidt law, and we present new analytical solutions for the evolution of the metallicity (Z) in galaxies. In particular, we take into account environmental effects including primordial and enriched gas infall, outflow, different star formation efficiencies, and galactic fountains. The enriched infall is included to take into account galaxy-galaxy interactions. Our main results can be summarized as: i) when a linear Schmidt law of star formation is assumed, the resulting time evolution of the metallicity Z is the same either for a closed-box model or for an outflow model. ii) The mass-metallicity relation for galaxies which suffer a chemically enriched infall, originating from another evolved galaxy with no pre-enriched gas, is shifted down in parallel at lower Z values, if compared the closed box model. iii) When a galaxy suffers at the same time a primordial infall and a chemically enriched one, the primordial infall always dominates the chemical evolution. iv) We present new solutions for the metallicity evolution in a galaxy which suffers galactic fountains and an enriched infall from another galaxy at the same time. The analytical solutions presented here can be very important to study the metallicity (oxygen), which is measured in high-redshift objects. These solutions can be very useful: a) in the context of cosmological semi-analytical models for galaxy formation and evolution, and b) for the study of compact groups of galaxies.Comment: Accepted for publication in MNRA

    Chemical Evolution of M31

    Full text link
    We review chemical evolution models developed for M31 as well as the abundance determinations available for this galaxy. Then we present a recent chemical evolution model for M31 including radial gas flows and galactic fountains along the disk, as well as a model for the bulge. Our models are predicting the evolution of the abundances of several chemical species such as H, He, C, N, O, Ne, Mg, Si, S, Ca and Fe. From comparison between model predictions and observations we can derive some constraints on the evolution of the disk and the bulge of M31. We reach the conclusions that Andromeda must have evolved faster than the Milky Way and inside-out, and that its bulge formed much faster than the disk on a timescale ≤\leq 0.5 Gyr. Finally, we present a study where we apply the model developed for the disk of M31 in order to study the probability of finding galactic habitable zones in this galaxy.Comment: To be published in:"Lessons from the Local Group: A Conference in Honour of David Block and Bruce Elmegreen" Editors: Prof. Dr. Kenneth Freeman, Dr. Bruce Elmegreen, Prof. Dr. David Block, Matthew Woolway, Springe

    The Galactic habitable zone around M and FGK stars with chemical evolution models with dust

    Full text link
    The Galactic habitable zone is defined as the region with highly enough metallicity to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life surviving to the destructive effects of nearby supernova explosion events. Galactic chemical evolution models can be useful tools for studying the galactic habitable zones in different systems. Our aim here is to find the Galactic habitable zone using chemical evolution models for the Milky Way disc, adopting the most recent prescriptions for the evolution of dust and for the probability of finding planetary systems around M and FGK stars. Moreover, for the first time, we will express those probabilities in terms of the dust-to-gas ratio of the ISM in the solar neighborhood as computed by detailed chemical evolution models. At a fixed Galactic time and Galactocentric distance we determine the number of M and FGK stars having Earths (but no gas giant planets) which survived supernova explosions, using the formalism of our Paper I. The probabilities of finding terrestrial planets but not gas giant planets around M stars deviate substantially from the ones around FGK stars for supersolar values of [Fe/H]. For both FGK and M stars the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic Centre, if destructive effects by supernova explosions are taken into account. At the present time the total number of M stars with habitable planets are ≃\simeq 10 times the number of FGK stars. Moreover, we provide a sixth order polynomial fit (and a linear one but more approximated) for the relation found with chemical evolution models in the solar neighborhood between the [Fe/H] abundances and the dust-to-gas ratio.Comment: Accepted for publication in A&A, 10 pages 6 figure

    The galactic habitable zone of the Milky Way and M31 from chemical evolution models with gas radial flows

    Full text link
    The galactic habitable zone is defined as the region with sufficient abundance of heavy elements to form planetary systems in which Earth-like planets could be born and might be capable of sustaining life, after surviving to close supernova explosion events. Galactic chemical evolution models can be useful for studying the galactic habitable zones in different systems. We apply detailed chemical evolution models including radial gas flows to study the galactic habitable zones in our Galaxy and M31. We compare the results to the relative galactic habitable zones found with "classical" (independent ring) models, where no gas inflows were included. For both the Milky Way and Andromeda, the main effect of the gas radial inflows is to enhance the number of stars hosting a habitable planet with respect to the "classical" model results, in the region of maximum probability for this occurrence, relative to the classical model results. These results are obtained by taking into account the supernova destruction processes. In particular, we find that in the Milky Way the maximum number of stars hosting habitable planets is at 8 kpc from the Galactic center, and the model with radial flows predicts a number which is 38% larger than what predicted by the classical model. For Andromeda we find that the maximum number of stars with habitable planets is at 16 kpc from the center and that in the case of radial flows this number is larger by 10 % relative to the stars predicted by the classical model.Comment: Accepted by MNRA

    Abundance gradients in spiral disks: is the gradient inversion at high redshift real?

    Full text link
    We compute the abundance gradients along the disk of the Milky Way by means of the two-infall model: in particular, the gradients of oxygen and iron and their temporal evolution. First, we explore the effects of several physical processes which influence the formation and evolution of abundance gradients. They are: i) the inside-out formation of the disk, ii) a threshold in the gas density for star formation, iii) a variable star formation efficiency along the disk, iv) radial flows and their speed, and v) different total surface mass density (gas plus stars) distributions for the halo. We are able to reproduce at best the present day gradients of oxygen and iron if we assume an inside-out formation, no threshold gas density, a constant efficiency of star formation along the disk and radial gas flows. It is particularly important the choice of the velocity pattern for radial flows and the combination of this velocity pattern with the surface mass density distribution in the halo. Having selected the best model, we then explore the evolution of abundance gradients in time and find that the gradients in general steepen in time and that at redshift z~3 there is a gradient inversion in the inner regions of the disk, in the sense that at early epochs the oxygen abundance decreases toward the Galactic center. This effect, which has been observed, is naturally produced by our models if an inside-out formation of the disk and and a constant star formation efficiency are assumed. The inversion is due to the fact that in the inside-out formation a strong infall of primordial gas, contrasting chemical enrichment, is present in the innermost disk regions at early times. The gradient inversion remains also in the presence of radial flows, either with constant or variable speed in time, and this is a new result.Comment: 15 pages, 19 figures, accepted for publication in MNRA

    The effect of stellar migration on Galactic chemical evolution: a heuristic approach

    Get PDF
    In the last years, stellar migration in galactic discs has been the subject of several investigations. However, its impact on the chemical evolution of the Milky Way still needs to be fully quantified. In this paper, we aim at imposing some constraints on the significance of this phenomenon by considering its influence on the chemical evolution of the Milky Way thin disc. We do not investigate the physical mechanisms underlying the migration of stars. Rather, we introduce a simple, heuristic treatment of stellar migration in a detailed chemical evolution model for the thin disc of the Milky Way, which already includes radial gas flows and reproduces several observational constraints for the solar vicinity and the whole Galactic disc. When stellar migration is implemented according to the results of chemo-dynamical simulations by Minchev et. al. (2013) and finite stellar velocities of 1 km s−1^{-1} are taken into account, the high-metallicity tail of the metallicity distribution function of long-lived thin-disc stars is well reproduced. By exploring the velocity space, we find that the migrating stars must travel with velocities in the range 0.5 -2 km s−1^{-1} to properly reproduce the high-metallicity tail of the metallicity distribution. We confirm previous findings by other authors that the observed spread in the age-metallicity relation of solar neighbourhood stars can be explained by the presence of stars which originated at different Galactocentric distances, and we conclude that the chemical properties of stars currently observed in the solar vicinity do suggest that stellar migration is present to some extent.Comment: Accepted for publication by Ap

    The Effects of radial inflow of gas and galactic fountains on the chemical evolution of M31

    Full text link
    Galactic fountains and radial gas flows are very important ingredients in modeling the chemical evolution of galactic disks. Our aim here is to study the effects of galactic fountains and radial gas flows in the chemical evolution of the disk of M31. We adopt a ballistic method to study the effects of galactic fountains on the chemical enrichment of the M31 disk. We find that the landing coordinate for the fountains in M31 is no more than 1 kpc from the starting point, thus producing negligible effect on the chemical evolution of the disk. We find that the delay time in the enrichment process due to fountains is no longer than 100 Myr and this timescale also produces negligible effects on the results. Then, we compute the chemical evolution of the M31 disk with radial gas flows produced by the infall of extragalactic material and fountains. We find that a moderate inside-out formation of the disk coupled with radial flows of variable speed can very well reproduce the observed gradient. We discuss also the effects of other parameters such a threshold in the gas density for star formation and an efficiency of star formation varying with the galactic radius. We conclude that the most important physical processes in creating disk gradients are the inside-out formation and the radial gas flows. More data on abundance gradients both locally and at high redshift are necessary to confirm this conclusion.Comment: Accepted by A&

    The connection between the Galactic halo and ancient Dwarf Satellites

    Full text link
    We explore the hypothesis that the classical and ultra-faint dwarf spheroidal satellites of the Milky Way have been the building blocks of the Galactic halo by comparing their [O/Fe] and [Ba/Fe] versus [Fe/H] patterns with the ones observed in Galactic halo stars. Oxygen abundances deviate substantially from the observed abundances in the Galactic halo stars for [Fe/H] values larger than -2 dex, while they overlap for lower metallicities. On the other hand, for the [Ba/Fe] ratio the discrepancy is extended at all [Fe/H] values, suggesting that the majority of stars in the halo are likely to have been formed in situ. Therefore, we suggest that [Ba/Fe] ratios are a better diagnostic than [O/Fe] ratios. Moreover, we show the effects of an enriched infall of gas with the same chemical abundances as the matter ejected and/or stripped from dwarf satellites of the Milky Way on the chemical evolution of the Galactic halo. We find that the resulting chemical abundances of the halo stars depend on the assumed infall time scale, and the presence of a threshold in the gas for star formation.Comment: To appear in Proceeding of Science: Frontier Research in Astrophysics - II 23-28 May 2016 Mondello (Palermo), Ital
    • …
    corecore