In the last years, stellar migration in galactic discs has been the subject
of several investigations. However, its impact on the chemical evolution of the
Milky Way still needs to be fully quantified. In this paper, we aim at imposing
some constraints on the significance of this phenomenon by considering its
influence on the chemical evolution of the Milky Way thin disc. We do not
investigate the physical mechanisms underlying the migration of stars. Rather,
we introduce a simple, heuristic treatment of stellar migration in a detailed
chemical evolution model for the thin disc of the Milky Way, which already
includes radial gas flows and reproduces several observational constraints for
the solar vicinity and the whole Galactic disc. When stellar migration is
implemented according to the results of chemo-dynamical simulations by Minchev
et. al. (2013) and finite stellar velocities of 1 km s−1 are taken into
account, the high-metallicity tail of the metallicity distribution function of
long-lived thin-disc stars is well reproduced. By exploring the velocity space,
we find that the migrating stars must travel with velocities in the range 0.5
-2 km s−1 to properly reproduce the high-metallicity tail of the
metallicity distribution. We confirm previous findings by other authors that
the observed spread in the age-metallicity relation of solar neighbourhood
stars can be explained by the presence of stars which originated at different
Galactocentric distances, and we conclude that the chemical properties of stars
currently observed in the solar vicinity do suggest that stellar migration is
present to some extent.Comment: Accepted for publication by Ap