1 research outputs found

    Theoretical investigation of n-butane isomerization in metal-substituted aluminosilicates

    Get PDF
    Der stetige Anstieg an Treibhausgasen in unserer Atmosphäre, welche der Grund für den konstanten Anstieg der Temperatur der Erde sind, beruht zu einem großen Teil auf der Emission dieser Gase, z.B. von Kohlenstoffdioxid (CO2_2), durch industrielle Prozesse. Speziell in der petrochemischen Industrie wird eine große Menge an CO2_2 durch Flaring von ungewollten leichten Kohlenwasserstoffen, wie z.B. Butan, produziert. Um das Problem des Klimawandels, welches auf dem erhöhten Ausstoß von Treibhausgasen beruht, zu bekämpfen, is es von hoher Wichtigkeit, diese Nebenprodukte effizient zu nutzen. Im Fall von Butan ist eine katalytische Isomerisierung zu Isobutan möglich. Isobutan ist ein sehr viel wertvolleres Molekül aufgrund der diversen Verwendungsmöglichkeiten in der Industrie, z.B. zur Verbesserung der Oktanzahl von Benzin oder in der Synthese von Methyl-tert-butyl-ether (MTBE) via Isobutylen. Jedoch enthalten gegenwärtig für diese Reaktion verwendete Katalysatoren toxische Komponenten, wodurch deren Verwendung gefährlich und umweltschädlich ist. Daher ist eine gründliche und breite Forschung notwendig, um effizientere, billigere und umweltfreundlichere Katalysatoren für die Isomerisierung von n-Butan zu Isobutan zu entdecken. In dieser Arbeit wird dieses Problem rechnerisch mithilfe von sehr genauen Dichtefunktionaltheorie (DFT) Rechnungen angegangen. Die zugrundeliegenden Mechanismen der n-Butan Isomerisierung werden mithilfe eines Modell-Katalysators, H-SSZ-13 (CHA), untersucht, welcher kostengünstig und einfach zu berechnen ist. Die zwei in der Literatur ausgiebig diskutierten Reaktionspfade für die Isomerisierung von 2-Buten, nämlich der monomolekulare und der bimolekulare Mechanismus, werden in dem Zeoliten H-SSZ-13 optimiert und miteinander verglichen. Zusätzlich wurden zwei weitere Reaktionsmechanismen vorgestellt, der (intermolekulare) Wasserstoff-Transfer-Mechanismus und der Methyl-Transfer-Mechanismus. Ersterer zeigt eine Möglichkeit auf, wie Olefine, welche während der Reaktion gebildet werden, die Reaktion selbst katalysieren können, während letzterer einen zweiten Reaktionspfad beschreibt, durch welchen die Bildung von ungewünschten Nebenprodukten der Reaktion erklärt werden können. Die Reaktionsbarrieren wurden für alle Mechanismen mithilfe sehr genauer Methoden berechnet. Diese Barrieren zeigen, dass für den Zeolit H-SSZ-13 mit einer Barriere von 152 kJ/mol bei einer Temperatur von 400 °C der monomolekulare Mechanismus gegenüber dem bimolekularen Mechanismus bevorzugt wird. Der Wasserstoff-Transfer-Mechanismus hat eine eher hohe freie Barriere der freien Energie von 203 kJ/mol, während die Barriere für den Methyl-Transfer-Mechanismus mit 227 kJ/mol sehr hoch und daher bei den betracheten Reaktionsbedingungen nicht plausibel ist. Diese Reaktionsmechanismen werden anschließend in einer Reihe von verschiedenen Zeoliten und Zeotypen von CHA, AFI und MOR neu optimiert. Für den monomolekularen Mechanismus werden abhängig von dem konkreten Zeoliten unterschiedliche Reaktionspfade als optimal berechnet. Für Zeolite, welche eine höhere Azidität aufweisen, wie es für AFI der Fall ist, wird der bimolekulare Mechanismus als konkurrierend oder sogar als dominant gegenüber den monomolekularen Mechanismus berechnet. Die Barrieren des Wasserstoff-Transfer-Mechanismus reichen von 181 kJ/mol bis 236 kJ/mol, was bedeutet, dass diese im Fall von stark aziden Zeoliten berücksichtigt werden müssen, während der Methyl-Transfer-Mechanismus nur Barrieren von \geq217 kJ/mol aufzeigt. Alle Resultate werden schlussendlich mittels linearer Skalierungsbeziehungen zusammengefasst, welche sich auf die Adsorptionsenergie von Ammoniak als Deskriptor beziehen. Es ist bekannt, dass diese Skalierungsbeziehungen Tendenzen in der Reaktivität von Zeolit-Katalysatoren voraussagen können, und dies gilt auch hier für die in dieser Arbeit untersuchten Reaktionsmechanismen
    corecore