9 research outputs found

    Crossed beaks in a local Swiss chicken breed.

    Get PDF
    BACKGROUND Crossed beaks have been reported to occur in Appenzeller Barthuhn, a local Swiss chicken breed. The assumed causes for this beak deformity which are also seen in other bird species including domestic chickens, range from environmental influences to genetic factors. The aim of this project was to characterize the prevalence, the phenotype, and the underlying genetics of crossed beaks in Appenzeller Barthuhn chickens. RESULTS The estimated prevalence of 7% crossed beaks in Appenzeller Barthuhn was significantly higher compared to two other local Swiss chicken breeds. A breeding trial showed significantly higher prevalence of offspring with deformed beaks from mating of affected parents compared to mating of non-affected parents. Examination of 77 Appenzeller Barthuhn chickens with crossed beaks showed a variable phenotype presentation. The deviation of the beak from the median plane through the head ranged from 1° to 61°. In more than 60% of the cases, the upper and lower beak were bent in the same direction, whereas the remaining cases showed different forms of crossed beaks. Computed tomographic scans and bone maceration of the head of two chickens with crossed beaks revealed that the maxilla and the mandibula were affected, while other parts of the skull appeared to be normal. The gene LOC426217, a member of the keratin family, was postulated as a candidate gene for beak deformity in domestic chickens. Sequencing of the coding region revealed two significantly associated synonymous variants for crossed beaks in Appenzeller Barthuhn chickens. A genome-wide association study and a comparative analysis of runs of homozygosity based on high-density SNP array genotyping data of 53 cases and 102 controls showed no evidence of association. CONCLUSIONS The findings suggest a hereditary cause of crossed beaks in Appenzeller Barthuhn chickens. However, the observed variation in the phenotype, together with the inconclusive molecular genetic results indicates the need for additional research to unravel the genetic architecture of this beak deformity

    Additional file 5: of Crossed beaks in a local Swiss chicken breed

    No full text
    Genotypes and diplotypes of Appenzeller Barthuhn and two other Swiss Chicken breeds. Genotypes of 12 variants and their diplotypes in LOC426217 of Appenzeller Barthuhn, Appenzeller Spitzhaubenhuhn and Schweizerhuhn. (XLSX 30 kb

    Additional file 6: of Crossed beaks in a local Swiss chicken breed

    No full text
    GWAS of 53 cases and 102 controls. (A) Manhattan plot. The red line marks the 5% Bonferroni-corrected threshold for 341,115 independent tests (pBONF 1.47 × 10− 7). (B) MDS plot. (C) QQ plot. (TIFF 1480 kb

    Additional file 1: of Crossed beaks in a local Swiss chicken breed

    No full text
    Scheme of the breeding trial. In total six breeding units of comparable size, made up the parental generation: three units consisting of affected animals (orange units, three to four affected hens and one affected rooster) and three units consisting of control animals (blue units, five hens and one rooster). For the F1-generation, eggs of the six parental groups were collected and incubated. After hatching, chicks were reared until the age of 12 weeks. (TIFF 1025 kb

    Additional file 3: of Crossed beaks in a local Swiss chicken breed

    No full text
    Phenotyping tool for the measurement of beak angles. The head is fixed between two screws, which sit in the orbita of the skull, and one caudal screw, which supports the caudal part of the head. The photograph is taken from directly above. Based on the photograph, the 0° axis is defined as perpendicular to the two screws and through the median plane of the head (central vertical line of the grid). The axis of the beak is defined by drawing a line along the base and middle part of the upper or lower beak (yellow line). (TIFF 10326 kb
    corecore