28 research outputs found
An Update on Feline Calicivirus
Feline Calicivirus (FCV) is one of the most common viral pathogens in domestic cats worldwide. The first report of FCV dates back to 1957, when FCV was isolated from the gastrointestinal tract of cats in New Zealand. Subsequent reports recognised FCV as a cause of respiratory disease in cats, and at present, feline practitioners worldwide are daily confronted with cats suffering from suspected FCV. The highly mutagenic nature of FCV and its high genetic plasticity enable the virus to successfully survive in the feline population, and pose a special challenge as regards the diagnosis, treatment, and prevention of FCV-induced disease. Upper respiratory tract disease has been considered a common clinical sign of FCV infection. A study from Switzerland demonstrated that oral ulcerations, salivation and gingivitis-stomatitis were more commonly associated with FCV infection than upper respiratory tract disease, and less than half of the cats suspected to have FCV infection were found to be FCV-positive. Furthermore, a study investigating FCV isolates from Switzerland found some evidence that the genetic background of cats might influence their susceptibility to FCV infection. This review article provides a comprehensive summary of the FCV literature, and integrates the results of recent research on FCV's genetic characteristics, the cellular and humoral immunity evoked by FCV vaccination and infection, the diagnosis of FCV, FCV prevention/vaccination, the risk factors associated with FCV, and the hygienic measures necessary in FCV-contaminated areas. After each section, the key points are summarised, and relevant information is outlined to help feline practitioners in FCV diagnosis, treatment and prevention
Survey among FELASA members about rehoming of animals used for scientific and educational purposes
Rehoming is an important fate, which should be considered for animals used for scientific and educational purposes, and which is highlighted in the European Directive 2010/63 EU. In 2018, the Federation of European Laboratory Animal Science Associations (FELASA) convened a working group to review current literature and identify existing practices with the aim of issuing general recommendations on the rehoming of research animals. In order to understand the number and species of animals being rehomed and which species and information to include in the recommendations, the working group launched a survey that was distributed among FELASA members, yielding 97 valid records for analysis. Most respondents of the survey considered the rehoming of cats, dogs, mice, rats, rabbits, pigs and minipigs. The most important issues reported by the respondents were related to availability/suitability of animals, availability of adopters and legal issues. Based on the data and information collected in this survey, the working group decided on the format and content of the future recommendations: a first section containing a general protocol for rehoming, addressing the issues raised by the respondents, and a second section containing species-specific information and advice about cats, dogs, small prey mammals, equines, primates, camelids and minipigs
FELASA recommendations for the rehoming of animals used for scientific and educational purposes
Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010 states that at the end of a procedure, the most appropriate decision on the future of an animal previously used or intended for use in scientific procedures should be taken on the basis of animal welfare and potential risks to the environment. Member States may allow animals to be rehomed provided the health of the animal allows it, there is no danger to public health, animal health or the environment and if appropriate measures have been taken to safeguard the wellbeing of the animal. In countries where rehoming is permitted, it is the responsibility of the Animal Welfare Body to advise on a rehoming scheme which must include appropriate socialization in order to help facilitate successful rehoming, avoid unnecessary distress to the animals and guarantee public safety. This paper reviews the EU legislation, existing guidance, current literature and best practice to define rehoming, sets out general considerations for rehoming laboratory animals including socialization and provides practical advice on the steps required in a rehoming scheme. For those species most frequently rehomed, more detailed species-specific sections are included
Long-term follow-up of cats in complete remission after treatment of feline infectious peritonitis with oral GS-441524
Objectives Feline infectious peritonitis (FIP), a common disease in cats caused by feline coronavirus (FCoV), is usually fatal once clinical signs appear. Successful treatment of FIP with oral GS-441524 for 84 days was demonstrated recently by this research group. The aim of this study was to evaluate the long-term outcome in these cats. Methods A total of 18 successfully treated cats were followed for up to 1 year after treatment initiation (9 months after completion of the antiviral treatment). Follow-up examinations were performed at 12-week intervals, including physical examination, haematology, serum biochemistry, abdominal and thoracic ultrasound, FCoV ribonucleic acid (RNA) loads in blood and faeces by reverse transciptase-quantitative PCR and anti-FCoV antibody titres by indirect immunofluorescence assay. Results Follow-up data were available from 18 cats in week 24, from 15 cats in week 36 and from 14 cats in week 48 (after the start of treatment), respectively. Laboratory parameters remained stable after the end of the treatment, with undetectable blood viral loads (in all but one cat on one occasion). Recurrence of faecal FCoV shedding was detected in five cats. In four cats, an intermediate short-term rise in anti-FCoV antibody titres was detected. In total, 12 cats showed abdominal lymphadenomegaly during the follow-up period; four of them continuously during the treatment and follow-up period. Two cats developed mild neurological signs, compatible with feline hyperaesthesia syndrome, in weeks 36 and 48, respectively; however, FCoV RNA remained undetectable in blood and faeces, and no increase in anti-FCoV antibody titres was observed in these two cats, and the signs resolved. Conclusions and relevance Treatment with GS-441524 proved to be effective against FIP in both the short term as well as the long term, with no confirmed relapse during the 1-year follow-up period. Whether delayed neurological signs could be a long-term adverse effect of the treatment or associated with a ‘long FIP syndrome’ needs to be further evaluated
Alpha-1-Acid Glycoprotein Quantification via Spatial Proximity Analyte Reagent Capture Luminescence Assay: Application as Diagnostic and Prognostic Marker in Serum and Effusions of Cats with Feline Infectious Peritonitis Undergoing GS-441524 Therapy
Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at −20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200–5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305–3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78–616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment’s effectiveness and identify potential relapses at an early stage
Clinical Follow-Up and Postmortem Findings in a Cat That Was Cured of Feline Infectious Peritonitis with an Oral Antiviral Drug Containing GS-441524
This is the first report on a clinical follow-up and postmortem examination of a cat that had been cured of feline infectious peritonitis (FIP) with ocular manifestation by successful treatment with an oral multicomponent drug containing GS-441524. The cat was 6 months old when clinical signs (recurrent fever, lethargy, lack of appetite, and fulminant anterior uveitis) appeared. FIP was diagnosed by ocular tissue immunohistochemistry after enucleation of the affected eye. The cat was a participant in a FIP treatment study, which was published recently. However, 240 days after leaving the clinic healthy, and 164 days after the end of the 84 days of treatment, the cured cat died in a road traffic accident. Upon full postmortem examination, including histopathology and immunohistochemistry, there were no residual FIP lesions observed apart from a generalized lymphadenopathy due to massive lymphoid hyperplasia. Neither feline coronavirus (FCoV) RNA nor FCoV antigen were identified by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry, respectively, in any tissues or body fluids, including feces. These results prove that oral treatment with GS-441524 leads to the cure of FIP-associated changes and the elimination of FCoV from all tissues.
Keywords: FCoV; FIP; Mutian; Xraphconn®; antiviral chemotherapy; feline coronavirus; necropsy; therapy; treatmen
Curing cats with Feline Infectious Peritonitis with an oral multi-component drug containing GS-441524
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species
Modified-live feline calicivirus vaccination elicits cellular immunity against a current feline calicivirus field strain in an experimental geline challenge study
Feline calicivirus (FCV) is a common cat virus associated with oral ulcerations and virulent-systemic disease. Efficacious FCV vaccines protect against severe disease but not against infection. The high genetic diversity of FCV poses a challenge in vaccine design. Protection against FCV has been related to humoral and cellular immunity; the latter has not been studied in detail. This study investigates the cellular and humoral immune response of specified pathogen-free (SPF) cats after modified-live FCV F9 vaccinations and two heterologous FCV challenges by the analysis of lymphocyte subsets, cytokine mRNA transcription levels, interferon (IFN)-γ release assays in peripheral blood mononuclear cells (PBMCs), anti-FCV antibodies, and neutralisation activity. Vaccinated cats developed a Th1 cytokine response after vaccination. Vaccination resulted in antibodies with neutralising activity against the vaccine but not the challenge viruses. Remarkably, IFN-γ-releasing PBMCs were detected in vaccinated cats upon stimulation with the vaccine strain and the first heterologous FCV challenge strain. After the first experimental infection, the mRNA transcription levels of perforin, granzyme B, INF-γ, and antiviral factor MX1 and the number of IFN-γ-releasing PBMCs when stimulated with the first challenge virus were higher in vaccinated cats compared to control cats. The first FCV challenge induced crossneutralising antibodies in all cats against the second challenge virus. Before the second challenge, vaccinated cats had a higher number of IFN-γ-releasing PBMCs when stimulated with the second challenge virus than control cats. After the second FCV challenge, there were less significant differences detected between the groups regarding lymphocyte subsets and cytokine mRNA transcription levels. In conclusion, modified-live FCV vaccination induced cellular but not humoral crossimmunity in SPF cats; innate immune mechanisms, secretory and membranolytic pathways, and IFN-γ-releasing PBMCs seem to be important in the host immune defence against FCV