102 research outputs found

    Gold(I) Catalysts with Bifunctional P, N Ligands

    Full text link
    A series of phosphanes with imidazolyl substituents were prepared as hemilabile PN ligands. The corresponding gold(I) complexes were tested as bifunctional catalysts in the Markovnikov hydration of 1-octyne, as well as in the synthesis of propargylamines by the three component coupling reaction of piperidine, benzaldehyde, and phenylacetylene. While the activity in the hydration of 1-octyne was low, the complexes are potent catalysts for the three component coupling reaction. In homogeneous solution the conversions to the respective propargylamine were considerably higher than under aqueous biphasic conditions. The connectivity of the imidazolyl substituents to the phosphorus atom, their substitution pattern, as well as the number of heteroaromatic substituents have pronounced effects on the catalytic activity of the corresponding gold(I) complexes. Furthermore, formation of polymetallic species with Au(2), Au(3), and Au(4) units has been observed and the solid-state structures of the compounds (5)(2)Au(3)Cl(2)]Cl and (3c)(2)Au(4)Cl(2)]Cl(2) (3c = tris(2-isopropylimidazol-4(5)-yl phosphane, 5 = 2-tert-butylimidazol-4(5)-yldiphenyl phosphane) were determined. The gold(I) complexes of imidazol-2-yl phosphane ligands proved to be a novel source for bis(NHC)gold(I) complexes (NHC = N-heterocyclic carbene)

    Conjugation of a novel histidine derivative to biomolecules and labelling with [99mTc(OH2)3(CO)3]+.

    Full text link
    The new histidine derivative 3-[1-[3-(9H-fluoren-9-ylmethoxycarbonylamino)-propyl]-1H-imidazol-4-yl]-2-(3-trimethylsilanyl-ethylcarboxyamino)-propionic acid methyl ester (7) has been prepared via alkylation of the histidine urea derivative (7S)-5,6,7,8-tetrahydro-7-(methoxycarbonyl)-5-oxoimidazo-[1,5-c]-pyrimidine (2) with Fmoc-protected 3-iodopropyl-amine, followed by ring opening with 2-trimethylsilylethanol. After Fmoc cleavage by HNEt2, the histidine amine derivative was coupled to biotin, to the pentapeptide leucine-enkephalin and to Vitamin B12-b-acid by amide formation, employing TBTU as the coupling reagent. In order to make the histidine accessible for labelling, the teoc protecting group was removed by either NBu4F (for the biotin conjugate) or by TFA (for the enkephalin and B12 conjugates). Reaction of a 10(-4) M solution of the bioconjugates with [99mTc(H2O)3(CO)3]+ at 50 degrees C for 30 min led to the formation of one single new peak in the HPLC radiochromatogram in each case, confirming quantitative labelling of the respective biomolecules. To assess the nature of the labelled compounds, the rhenium analogues with Re(CO)3 were also synthesised and similar retention times confirmed the identity with the 99mTc labelled conjugates

    Derivatives of sodium boranocarbonate as novel CO-releasing molecules (CO-RMs)

    Full text link
    Despite the apparent and well-known toxic effects of carbon monoxide (CO), studies on the intriguing biological roles of this molecule are rapidly emerging. Recent investigations have brought to the limelight various physiological effects of CO which include, among others, vasorelaxation and inhibition of organ rejection after transplantation. The importance of CO in biology can be compared with another gas, nitric oxide (NO), an essential and ubiquitous signalling molecule. This parallelism led to the tantalising concept of using CO for therapeutic purposes wherein compounds that transport and deliver this gas to a target tissue would clearly facilitate both the clinical feasibility and the specificity of CO therapy. Sodium boranocarbonate, Na[H3 BCO2H] (1) was the first water-soluble and non-transition metal containing CO-releasing molecule (CO-RM) to be identified. In order to tune the rate of CO release, we modified 1 and synthesised and characterized various derivatives which release CO under physiological conditions but at rates different from the parent compound 1. The synthesis, structure and CO-releasing properties of ester and amide derivatives of 1 will be presented together with some biological studies carried out with a selection of the compounds

    Di- and mononuclear nickel complexes and their behaviour towards nucleic acids

    Full text link
    corecore