9 research outputs found

    β-Cell Generation: Can Rodent Studies Be Translated to Humans?

    Get PDF
    β-cell replacement by allogeneic islet transplantation is a promising approach for patients with type 1 diabetes, but the shortage of organ donors requires new sources of β cells. Islet regeneration in vivo and generation of β-cells ex vivo followed by transplantation represent attractive therapeutic alternatives to restore the β-cell mass. In this paper, we discuss different postnatal cell types that have been envisaged as potential sources for future β-cell replacement therapy. The ultimate goal being translation to the clinic, a particular attention is given to the discrepancies between findings from studies performed in rodents (both ex vivo on primary cells and in vivo on animal models), when compared with clinical data and studies performed on human cells

    Loss of β-Cell Identity Occurs in Type 2 Diabetes and Is Associated With Islet Amyloid Deposits

    No full text
    Loss of pancreatic islet beta-cell mass and beta-cell dysfunction are central in the development of type 2 diabetes (T2DM). We recently showed that mature human insulin-containing beta-cells can convert into glucagon-containing alpha-cells ex vivo. This loss of beta-cell identity was characterized by the presence of beta-cell transcription factors (Nkx6.1, Pdx1) in glucagon(+) cells. Here, we investigated whether the loss of beta-cell identity also occurs in vivo, and whether it is related to the presence of (pre)diabetes in humans and nonhuman primates. We observed an eight times increased frequency of insulin(+) cells coexpressing glucagon in donors with diabetes. Up to 5% of the cells that were Nkx6.1(+) but insulin(-) coexpressed glucagon, which represents a five times increased frequency compared with the control group. This increase in bihormonal and Nkx6.1(+)glucagon(+)insulin(-) cells was also found in islets of diabetic macaques. The higher proportion of bihormonal cells and Nkx6.1(+)glucagon(+)insulin(-) cells in macaques and humans with diabetes was correlated with the presence and extent of islet amyloidosis. These data indicate that the loss of beta-cell identity occurs in T2DM and could contribute to the decrease of functional beta-cell mass. Maintenance of beta-cell identity is a potential novel strategy to preserve beta-cell function in diabetes

    Vasculogenesis in kidney organoids upon transplantation

    Get PDF
    Human induced pluripotent stem cell-derived kidney organoids have potential for disease modeling and to be developed into clinically transplantable auxiliary tissue. However, they lack a functional vasculature, and the sparse endogenous endothelial cells (ECs) are lost upon prolonged culture in vitro, limiting maturation and applicability. Here, we use intracoelomic transplantation in chicken embryos followed by single-cell RNA sequencing and advanced imaging platforms to induce and study vasculogenesis in kidney organoids. We show expansion of human organoid-derived ECs that reorganize into perfused capillaries and form a chimeric vascular network with host-derived blood vessels. Ligand-receptor analysis infers extensive potential interactions of human ECs with perivascular cells upon transplantation, enabling vessel wall stabilization. Perfused glomeruli display maturation and morphogenesis to capillary loop stage. Our findings demonstrate the beneficial effect of vascularization on not only epithelial cell types, but also the mesenchymal compartment, inducing the expansion of ´on target´ perivascular stromal cells, which in turn are required for further maturation and stabilization of the neo-vasculature. The here described vasculogenic capacity of kidney organoids will have to be deployed to achieve meaningful glomerular maturation and kidney morphogenesis in vitro
    corecore