1,734 research outputs found
Pathogenic microbial ancient DNA: a problem or an opportunity?
Copyright © Royal Society 2006Eske Willerslev, Alan Coope
Brief communication: Unusual pathological condition in the lower extremities of a skeleton from ancient Israel
A death from Langerhans cell histiocytosis and tuberculosis in 18th Century Hungary - what palaeopathology can tell us today
Molecular analysis of Mycobacterium tuberculosis DNA from a family of 18th century Hungarians
The naturally mummified remains of a mother and two daughters found in an 18th century Hungarian crypt were analysed, using multiple molecular genetic techniques to examine the epidemiology and evolution of tuberculosis. DNA was amplified from a number of targets on the Mycobacterium tuberculosis genome, including DNA from IS6110, gyrA, katG codon 463, oxyR, dnaA–dnaN, mtp40, plcD and the direct repeat (DR) region. The strains present in the mummified remains were identified as M. tuberculosis and not Mycobacterium bovis, from katG and gyrA genotyping, PCR from the oxyR and mtp40 loci, and spoligotyping. Spoligotyping divided the samples into two strain types, and screening for a deletion in the MT1801–plcD region initially divided the strains into three types. Further investigation showed, however, that an apparent deletion was due to poor DNA preservation. By comparing the effect of PCR target size on the yield of amplicon, a clear difference was shown between 18th century and modern M. tuberculosis DNA. A two-centre system was used to confirm the findings of this study, which clearly demonstrate the value of using molecular genetic techniques to study historical cases of tuberculosis and the care required in drawing conclusions. The genotyping and spoligotyping results are consistent with the most recent theory of the evolution and spread of the modern tuberculosis epidemic
Confirmation of the presence of Mycobacterium-tuberculosis complex-specific DNA in three archaeological specimens
This journal published the first reported identification of Mycobacterium tuberculosis complex (MTE) DNA in ancient human remains but CONCERNS were raised about the article two years after publication. These were based on methodology which, in the field of ancient DNA, was still developing. Here we present a re-examination of the 1993 research conducted on three specimens which exhibited palaeopathologies indicative of tuberculosis. The specimens were: an ulna from pre-European-contact Borneo, a spine from Byzantine Turkey, and a lumbar-sacral spine from 17th century Scotland. There was insufficient material to permit re-examination of all of the original samples. The earlier results were confirmed in two independent laboratories using different methodologies. MTB DNA complex-specific Dna amplicons were obtained, and sequenced in both laboratories, in a re-analysis of samples which supported the earlier findings
Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians
A large number (265) of burials from 1731-1838 were discovered in sealed crypts of the Dominican Church, Vac, Hungary in 1994. Many bodies were naturally mummified, so that both soft tissues and bones were available. Contemporary archives enabled the determination of age at death, and the identification of family groups. In some cases, symptoms before death were described and, occasionally, occupation. Initial radiological examination of a small number of individuals had indicated calcified lung lesions and demonstrable acid-fast bacteria suggestive of tuberculosis infection. Tuberculosis was endemic in 18th-19th century Europe, so human remains should contain detectable Mycobacterium tuberculosis complex (MTB) DNA, enabling comparisons with modern isolates. Therefore, a comprehensive examination of 168 individuals for the presence of MTB DNA was undertaken. Specific DNA amplification methods for MTB showed that 55% of individuals were positive and that the incidence varied according to age at death and sampling site in the body. Radiographs were obtained from 27 individuals and revealed an association between gross pathology and the presence of MTB DNA. There was an inverse relationship between PCR positivity and MTB target sequence size. In some cases, the preservation of MTB DNA was excellent, and several target gene sequences could be detected from the same sample. This information, combined with MTB DNA sequencing data and molecular typing techniques, will enable us to study the past epidemiology of TB infection, and extends the timeframe for studying changes in molecular fingerprints. Am J Phys Anthropol 120:144-152, 2003. (C) 2003 Wiley-Liss, Inc
Recommended from our members
Synthetic peripherally-restricted cannabinoid suppresses chemotherapy-induced peripheral neuropathy pain symptoms by CB1 receptor activation.
Chemotherapy-induced peripheral neuropathy (CIPN) is a severe and dose-limiting side effect of cancer treatment that affects millions of cancer survivors throughout the world and current treatment options are extremely limited by their side effects. Cannabinoids are highly effective in suppressing pain symptoms of chemotherapy-induced and other peripheral neuropathies but their widespread use is limited by central nervous system (CNS)-mediated side effects. Here, we tested one compound from a series of recently developed synthetic peripherally restricted cannabinoids (PRCBs) in a rat model of cisplatin-induced peripheral neuropathy. Results show that local or systemic administration of 4-{2-[-(1E)-1[(4-propylnaphthalen-1-yl)methylidene]-1H-inden-3-yl]ethyl}morpholine (PrNMI) dose-dependently suppressed CIPN mechanical and cold allodynia. Orally administered PrNMI also dose-dependently suppressed CIPN allodynia symptoms in both male and female rats without any CNS side effects. Co-administration with selective cannabinoid receptor subtype blockers revealed that PrNMI's anti-allodynic effects are mediated by CB1 receptor (CB1R) activation. Expression of CB2Rs was reduced in dorsal root ganglia from CIPN rats, whereas expression of CB1Rs and various endocannabinoid synthesizing and metabolizing enzymes was unaffected. Daily PrNMI treatment of CIPN rats for two weeks showed a lack of appreciable tolerance to PrNMI's anti-allodynic effects. In an operant task which reflects cerebral processing of pain, PrNMI also dose-dependently suppressed CIPN pain behaviors. Our results demonstrate that PRCBs exemplified by PrNMI may represent a viable option for the treatment of CIPN pain symptoms
Recommended from our members
Atypical features of rat dentate granule cells: recurrent basal dendrites and apical axons.
The stereotyped morphology of dentate granule cells in rodents consists of apical dendrites arborizing in the molecular layer and an axon arising from the opposite pole of the soma. Recently, we showed that epilepsy induces the formation of basal dendrites on granule cells and that these dendrites extend into the hilus of the dentate gyrus. The present Golgi study of granule cells from adult rats shows two atypical features for granule cells in control rats. One is the occurrence of recurrent basal dendrites (RBDs) that are defined as basal dendrites arising at or near the hilar pole of the soma and then curving back to the molecular layer. The frequency of granule cells with RBDs was 3.8% in control rats. The second is apical axons of granule cells that were observed to originate from either the apical pole of the soma or an apical dendrite. The incidence of these "apical" axons was about 1%. These morphological findings in the present study suggest that rat granule cells are more heterogeneous than previously indicated. Furthermore, their frequency was not increased in epileptic rats
Mycobacterium tuberculosis complex DNA from an extinct bison dated 17,000 years before the present
- …
