13 research outputs found

    Superconducting Quantum Interference Device Amplifiers with over 27 GHz of Gain-Bandwidth Product Operated in the 4 GHz--8 GHz Frequency Range

    Full text link
    We describe the performance of amplifiers in the 4 GHz--8 GHz range using Direct Current Superconducting Quantum Interference Devices(DC SQUIDs) in a lumped element configuration. We have used external impedance transformers to couple power into and out of the DC SQUIDs. By choosing appropriate values for coupling capacitors, resonator lengths and output component values, we have demonstrated useful gains in several frequency ranges with different bandwidths, showing over 27 GHz of power gain-bandwidth product. In this work, we describe our design for the 4 GHz--8 GHz range and present data demonstrating gain, bandwidth, dynamic range, and drift characteristics.Comment: four pages, 5 figure

    Input Impedance and Gain of a Gigahertz Amplifier Using a DC SQUID in a Quarter Wave Resonator

    Full text link
    Due to their superior noise performance, SQUIDs are an attractive alternative to high electron mobility transistors for constructing ultra-low-noise microwave amplifiers for cryogenic use. We describe the use of a lumped element SQUID inductively coupled to a quarter wave resonator. The resonator acts as an impedance transformer and also makes it possible for the first time to accurately measure the input impedance and intrinsic microwave characteristics of the SQUID. We present a model for input impedance and gain, compare it to the measured scattering parameters, and describe how to use the model for the systematic design of low-noise microwave amplifiers with a wide range of performance characteristics

    Noise performance of the radio-frequency single-electron transistor

    Get PDF
    We have analyzed a radio-frequency single-electron-transistor (RF-SET) circuit that includes a high-electron-mobility-transistor (HEMT)amplifier, coupled to the single-electron-transistor (SET) via an impedance transformer. We consider how power is transferred between different components of the circuit, model noise components, and analyze the operating conditions of practical importance. The results are compared with experimental data on SETs. Good agreement is obtained between our noise model and the experimental results. Our analysis shows, also, that the biggest improvement to the present RF-SETs will be achieved by increasing the charging energy and by lowering the HEMT amplifier noise contribution.Peer reviewe
    corecore