40 research outputs found

    Pattern of Kirtland's warbler occurrence in relation to the landscape structure of its summer habitat in northern Lower Michigan

    Full text link
    Studies of the endangered Kirtland's warbler in relation to landscape ecosystems were conducted from 1986–1988 on a large wildfire-burn surrounding Mack Lake in southeastern Oscoda County, Michigan. A landscape ecosystem approach was used to distinguish low- and high-elevation segments of the landscape, as well as 11 local ecosystem types. The ecosystems were distinguished by physiography, microclimate, soil, and vegetation. The early occurrence of the warblers was strongly related to landscape structure, i.e. , to the broad low- and high-elevation areas and the local ecosystem types within them. Territories of male warblers were observed in 5 of the 11 ecosystems. The five ecosystem types where warblers were observed were characterized by (1) a physiography of level or rolling terrain; (2) soil series of Grayling, Graycalm, Montcalm, or Rubicon; (3) uplands with relatively warm temperature during the breeding season; (4) vegetation dominated by low sweet blueberry, bearberry, wintergreen, northern pin oak, blue stem grasses, and hair cap moss; and (5) canopy of relatively tall, dense, and patchy jack pine and oak. Landscape structure appears to be an important factor affecting the occurrence of the warbler in its summer habitat in northern Lower Michigan.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43161/1/10980_2004_Article_BF00129700.pd

    Natural hybridization between Populus alba L. and the native aspens in southeastern Michigan

    No full text

    Mixed-severity fire regimes: Lessons and hypotheses from the Klamath-Siskiyou Ecoregion

    Get PDF
    Although mixed-severity fires are among the most widespread disturbances influencing western North American forests, they remain the least understood. A major question is the degree to which mixed-severity fire regimes are simply an ecological intermediate between low- and high-severity fire regimes, versus a unique disturbance regime with distinct properties. The Klamath-Siskiyou Mountains of southwestern Oregon and northwestern California provide an excellent laboratory for studies of mixed-severity fire effects, as structurally diverse vegetation types in the region foster, and partly arise from, fires of variable severity. In addition, many mixed-severity fires have occurred in the region in the last several decades, including the nationally significant 200,000-ha Biscuit Fire. Since 2002, we have engaged in studies of early ecosystem response to 15 of these fires, ranging from determinants of fire effects to responses of vegetation, wildlife, and biogeochemistry. We present here some of our important early findings regarding mixed-severity fire, thereby updating the state of the science on mixed-severity fire regimes and highlighting questions and hypotheses to be tested in future studies on mixed-severity fire regimes. Our studies in the Klamath-Siskiyou Ecoregion suggest that forests with mixed-severity fire regimes are characterized primarily by their intimately mixed patches of vegetation of varied age, resulting from complex variations in both fire frequency and severity and species responses to this variation. Based on our findings, we hypothesize that the proximity of living and dead forest after mixed-severity fire, and the close mingling of early- and late-seral communities, results in unique vegetation and wildlife responses compared to predominantly low- or high-severity fires. These factors also appear to contribute to high resilience of plant and wildlife species to mixed-severity fire in the Klamath-Siskiyou Ecoregion. More informed management of ecosystems with mixed-severity regimes requires understanding of their wide variability in space and time, and the particular ecological responses that this variability elicit
    corecore