4 research outputs found

    Anthelmintic A-Type Procyanidins and Further Characterization of the Phenolic Composition of a Root Extract from Paullinia pinnata

    Full text link
    Extracts from the roots of Paullinia pinnata L. are used in West Africa as traditional remedies for a variety of diseases including infestations with soil-transmitted helminths. Based on the results of an ethnopharmacological survey in Ghana, an aqueous acetone (70%) extract was investigated for its anthelmintic and phytochemical properties. Partitioning of the crude extract followed by several fractionation steps of the ethyl acetate phase using Sephadex® LH-20, fast centrifugal partition chromatography, RP-18-MPLC and HPLC led to isolation of six oligomeric A-type procyanidins (1 to 6). To determine the anthelmintic activity, the crude extract, fractions and isolated compounds were tested in vitro against the model organism Caenorhabditis elegans. A significantly better activity was observed for the trimeric A-type procyanidin (1) compared to a B-type trimer. However, this effect could not be generalized for the tetrameric procyanidins, for which the type of the interflavan-linkage (4→6 vs. 4→8) had the greatest impact on the bioactivity. Besides the procyanidins, three novel compounds, isofraxidin-7-O-α-l-rhamnopyranosyl-(1″→6′)-β-d-glucopyranoside (17), 4-methoxycatechol-2-O-(5′′-O-vanilloyl-β-apiofuranosyl)-(1′′→2′)-β-glucopyranoside (18) and a 6-(3-methoxy-4-hydroxyphenyl)-hexane-2,4-diol-2-O-hexoside (19) were isolated together with further ten known compounds (7 to 16), mainly coumarins and coumarinolignans. Except for 3-β-d-glucopyranosyloxy-4-methyl-2(5H)-furanone (15), none of the isolated compounds has previously been described for P. pinnata. The anthelmintic activity was attributed to the presence of procyanidins, but not to any of the other compound classes. In summary, the findings rationalize the traditional use of P. pinnata root extracts as anthelmintic remedies

    Amino Acid-Coupled Bromophenols and a Sulfated Dimethylsulfonium Lanosol from the Red Alga Vertebrata lanosa

    Full text link
    Vertebrata lanosa is a red alga that can commonly be found along the shores of Europe and North America. Its composition of bromophenols has been studied intensely. The aim of the current study was therefore to further investigate the phytochemistry of this alga, focusing more on the polar components. In total, 23 substances were isolated, including lanosol-4,7-disulfate (4) and the new compounds 3,5-dibromotyrosine (12), 3-bromo-5-sulfodihydroxyphenylalanine (13), 3-bromo-6-lanosyl dihydroxyphenylalanine (14), 3-(6′-lanosyl lanosyl) tyrosine (15) and 5-sulfovertebratol (16). In addition, 4-sulfo-7-dimethylsulfonium lanosol (7) was identified. While, in general, the dimethylsulfonium moiety is widespread in algae, its appearance in bromophenol is unique. Moreover, the major glycerogalactolipids, including the new ((5Z,8Z,11Z,14Z,17Z)-eicosapentaenoic acid 3′-[(6′’-O-α-galactopyranosyl-β-D-galactopyranosyl)]-1-glycerol ester (23), and mycosporine-like amino acids, porphyra-334 (17), aplysiapalythine A (18) and palythine (19), were identified

    Transcriptome analysis reveals molecular anthelmintic effects of procyanidins in C. elegans

    Full text link
    Worldwide, more than 1 billion people are affected by infestations with soil-transmitted helminths and also in veterinary medicine helminthiases are a severe threat to livestock due to emerging resistances against the common anthelmintics. Proanthocyanidins have been increasingly investigated for their anthelmintic properties, however, except for an interaction with certain proteins of the nematodes, not much is known about their mode of action. To investigate the anthelmintic activity on a molecular level, a transcriptome analysis was performed in Caenorhabditis elegans after treatment with purified and fully characterized oligomeric procyanidins (OPC). The OPCs had previously been obtained from a hydro-ethanolic (1:1) extract from the leaves of Combretum mucronatum, a plant which is traditionally used in West Africa for the treatment of helminthiasis, therefore, also the crude extract was included in the study. Significant changes in differential gene expression were observed mainly for proteins related to the intestine, many of which were located extracellularly or within cellular membranes. Among the up-regulated genes, several hitherto undescribed orthologues of structural proteins in humans were identified, but also genes that are potentially involved in the worms' defense against tannins. For example, T22D1.2, an orthologue of human basic salivary proline-rich protein (PRB) 2, and numr-1 (nuclear localized metal responsive) were found to be strongly up-regulated. Down-regulated genes were mainly associated with lysosomal activity, glycoside hydrolysis or the worms' innate immune response. No major differences were found between the groups treated with purified OPCs versus the crude extract. Investigations using GFP reporter gene constructs of T22D1.2 and numr-1 corroborated the intestine as the predominant site of the anthelmintic activity. The current findings support previous hypotheses of OPCs interacting with intestinal surface proteins and provide the first insights into the nematode's response to OPCs on a molecular level as a base for the identification of future drug targets.</p
    corecore