24 research outputs found

    Queckenstedt's test repurposed for the quantitative assessment of the cerebrospinal fluid pulsatility curve

    Full text link
    PURPOSE Before the era of spinal imaging, presence of a spinal canal block was tested through gross changes in cerebrospinal fluid pressure (CSFP) provoked by manual compression of the jugular veins (referred to as Queckenstedt's test; QT). Beyond these provoked gross changes, cardiac-driven CSFP peak-to-valley amplitudes (CSFPp) can be recorded during CSFP registration. This is the first study to assess whether the QT can be repurposed to derive descriptors of the CSF pulsatility curve, focusing on feasibility and repeatability. METHOD Lumbar puncture was performed in lateral recumbent position in fourteen elderly patients (59.7±9.3 years, 6F) (NCT02170155) without stenosis of the spinal canal. CSFP was recorded during resting state and QT. A surrogate for the relative pulse pressure coefficient was computed from repeated QTs (i.e., RPPC-Q). RESULTS Resting state mean CSFP was 12.3 mmHg (IQR 3.2) and CSFPp was 1.0 mmHg (0.5). Mean CSFP rise during QT was 12.5 mmHg (7.3). CSFPp showed an average 3-fold increase at peak QT compared to the resting state. Median RPPC-Q was 0.18 (0.04). There was no systematic error in the computed metrics between the first and second QT. CONCLUSION This technical note describes a method to reliably derive, beyond gross CSFP increments, metrics related to cardiac-driven amplitudes during QT (i.e., RPPC-Q). A study comparing these metrics as obtained by established procedures (i.e., infusion testing) and by QT is warranted

    Triggered episodic vestibular syndrome and transient loss of consciousness due to a retrostyloidal vagal schwannoma: a case report

    Get PDF
    BackgroundVarious conditions may trigger episodic vertigo or dizziness, with positional changes being the most frequently identified condition. In this study, we describe a rare case of triggered episodic vestibular syndrome (EVS) accompanied by transient loss of consciousness (TLOC) linked to retrostyloidal vagal schwannoma.Case descriptionA 27-year woman with known vestibular migraine presented with a 19-month history of nausea, dysphagia, and odynophagia triggered by swallowing food and followed by recurrent TLOC. These symptoms occurred independently of her body position, resulting in a weight loss of 10 kg within 1 year and in an inability to work. An extensive cardiologic diagnostic work-up undertaken before she presented to the neurologic department was normal. On the fiberoptic endoscopic evaluation of swallowing, she showed a decreased sensitivity, a slight bulging of the right lateral pharyngeal wall, and a pathological pharyngeal squeeze maneuver without any further functional deficits. Quantitative vestibular testing revealed an intact peripheral-vestibular function, and electroencephalography was read as normal. On the brain MRI, a 16 x 15 x 12 mm lesion in the right retrostyloidal space suspicious of a vagal schwannoma was detected. Radiosurgery was preferred over surgical resection, as resection of tumors in the retrostyloid space bears the risk of intraoperative complications and may result in significant morbidity. A single radiosurgical procedure (stereotactic CyberKnife radiosurgery, 1 x 13Gy) accompanied by oral steroids was performed. On follow-up, a cessation of (pre)syncopes was noted 6 months after treatment. Only residual infrequent episodes of mild nausea were triggered by swallowing solid food remained. Brain MRI after 6 months demonstrated no progression of the lesion. In contrast, migraine headaches associated with dizziness remained frequent.DiscussionDistinguishing triggered and spontaneous EVS is important, and identifying specific triggers by structured history-taking is essential. Episodes being elicited by swallowing solid foods and accompanied by (near) TLOC should initiate a thorough search for vagal schwannoma, as symptoms are often disabling, and targeted treatment is available. In the case presented here, cessation of (pre)syncopes and significant reduction of nausea triggered by swallowing was noted with a 6-month delay, illustrating the advantages (no surgical complications) and disadvantages (delayed treatment response) of first-line radiotherapy in vagal schwannoma treatment

    Dağlar çocuğu

    Get PDF
    C. C.'nin Talebe Defteri'nde tefrika edilen Dağlar Çocuğu adlı roman

    Influence of age on the relation between body position and noninvasively acquired intracranial pulse waves

    Get PDF
    The capacitive measurement of the head’s dielectric properties has been recently proposed as a noninvasive method for deriving surrogates of craniospinal compliance (CC), a parameter used in the evaluation of space-occupying neurological disorders. With the higher prevalence of such disorders in the older compared to the younger population, data on the head’s dielectric properties of older healthy individuals would be of particularly high value before assessing pathologic changes. However, so far only measurements on young volunteers ( 60 years were included in the study. W was acquired in the resting state (supine horizontal position), and during head-up and head-down tilting. AMP, the peak-to-valley amplitude of W related to cardiac action, was extracted from W. AMP was higher in this older cohort compared to the previously investigated younger one (0°: 5965 ± 1677 arbitrary units (au)). During head-up tilting, AMP decreased (+ 60°: 4446 ± 1620 au, P < 0.001), whereas it increased during head-down tilting (− 30°: 7600 ± 2123 au, P < 0.001), as also observed in the younger cohort. Our observation that AMP, a metric potentially reflective of CC, is higher in the older compared to the younger cohort aligns with the expected decrease of CC with age. Furthermore, the robustness of AMP is reinforced by the consistent relative changes observed during tilt testing in both cohorts

    RAQ: a novel surrogate for the craniospinal pressure-volume relationship

    Full text link
    OBJECTIVE The intracranial pressure-volume relation contains information relevant for diagnostics of hydrocephalus and other space-occupying pathologies. We aimed to design a noise-resilient surrogate for this relationship that can be calculated from intracranial pressure (ICP) signals. APPROACH The new surrogate, termed respiratory amplitude quotient (RAQ), characterizes the modulation of the cardiac pulse wave amplitude by the respiratory wave in the ICP time course. RAQ is defined as the ratio of the amplitude of the respiratory wave in the ICP signal to the amplitude of the respiration-induced variation in the course of the cardiac pulse wave amplitude. We validated the calculation of RAQ on synthetically generated ICP waveforms. We further extracted RAQ retrospectively from overnight ICP recordings in a cohort of hydrocephalus patients with aqueductal stenosis, age 55.8 ± 18.0 years, and a comparison group with hydrocephalus diagnosed by morphology in MRI, but not responsive to either external lumbar drainage or ventriculo-peritoneal shunting, age 72.5 ± 6.1 years. RAQ was determined for the full recordings, and separately for periods containing B-waves. MAIN RESULTS We found a mean difference of less than 2% between the calculated values of RAQ and the theoretically determined equivalent descriptors of the synthetic ICP waveforms. In the overnight recordings, we found significantly different RAQ values during B-waves in the aqueductal stenosis (0.86 ± 0.11) and non-responsive hydrocephalus patient groups (1.07 ± 0.20), p = 0.027. In contrast, there was no significant difference in other tested parameters, namely pressure-volume index, elastance coefficient, and resistance to outflow. Neither did we find significant difference when considering RAQ over the full recordings. SIGNIFICANCE Our results indicate that RAQ may function as a potential surrogate for the intracranial pressure-volume relation

    Why Hydrocephalus Patients Suffer When the Weather Changes: A New Hypothesis

    Full text link
    Hydrocephalus patients complain about symptoms related to weather changes, especially changes in atmospheric pressure (pat). We aimed to determine which physical, physiological, and pathophysiological effects can explain this phenomenon. We hypothesized that intracranial pressure (ICP) is influenced by changes of intracranial blood volume caused by autoregulatory changes in arterial diameter as a reaction to changing levels of arterial CO2 partial pressure (paCO2) caused by changes in atmospheric pressure (pat). To test this hypothesis, we investigated the influence of pat on paCO2, and then assessed the influence of paCO2 on ICP by extrapolating data found in the literature. Using conservative assumptions, we found that a change of pat of about 50 hPa will result in a change in ICP of above 1.65 mmHg, which could explain the symptoms patients reported

    B-waves revisited

    Get PDF
    Reduced intracranial compliance is a key manifestation common to a number of pathological conditions of the brain. It is encountered in, but not limited to, traumatic brain injury, cerebral edema, and hydrocephalus. There are no clinically accepted methods to measure intracranial compliance available to date. Intracranial pressure (ICP) waveform analysis is seeing a revival driven by advances in our understanding of cerebrospinal fluid and pressure dynamics. Its translation to widespread clinical use is dependent on the possibility to derive relevant metrics such as intracranial compliance reliably and non-invasively. The B-wave is one of the features of the ICP waveform, reflecting vasogenic activity of cerebral autoregulation. B-waves were originally defined to occupy the 0.5 to 2 cycles per minute frequency range. Recently renamed and redefined as slow waves with an extended range of 0.33 to 3 cycles per minute, specific changes in their pattern of occurrence are considered to be indicative of reduced intracranial compliance. With the still unmet need for a clinically acceptable method for acquiring intracranial compliance, and the revival of ICP waveform analysis, B-waves are moving back into the research focus. Herein we provide a concise review of the literature on B-waves, including a critical assessment of non-invasive methods for obtaining B-wave surrogates

    RAQ: A Noise-Resistant Calibration-Independent Compliance Surrogate

    Full text link
    The intracranial pressure (ICP)-volume relationship contains important information for diagnosing hydrocephalus and other space-occupying pathologies. We aimed to design a new parameter which quantifies the relationship and can be calculated from overnight recordings. The new parameter, the respiratory amplitude quotient (RAQ), characterizes the modulation of the pulse amplitude by the respiratory wave in the ICP time course. RAQ is defined as the ratio of the amplitude of the respiratory wave in the ICP signal to the amplitude of the respiration-induced wave in the course of the heartbeat-dependent pulse amplitude. We tested RAQ on synthetically generated ICP waveforms and found a mean difference of <0.5% between the calculated values of RAQ and the theoretically determined values. We further extracted RAQ from datasets obtained by overnight recording in hydrocephalus patients with a stenosis of the aqueduct and a comparison group finding a significant difference between the RAQ values of either group. Keywords Intracranial pressure Waveform analysis Respiratory amplitude quotient Pressure-volume relationshi

    Influence of age on the relation between body position and noninvasively acquired intracranial pulse waves

    No full text
    Abstract The capacitive measurement of the head’s dielectric properties has been recently proposed as a noninvasive method for deriving surrogates of craniospinal compliance (CC), a parameter used in the evaluation of space-occupying neurological disorders. With the higher prevalence of such disorders in the older compared to the younger population, data on the head’s dielectric properties of older healthy individuals would be of particularly high value before assessing pathologic changes. However, so far only measurements on young volunteers ( 60 years were included in the study. W was acquired in the resting state (supine horizontal position), and during head-up and head-down tilting. AMP, the peak-to-valley amplitude of W related to cardiac action, was extracted from W. AMP was higher in this older cohort compared to the previously investigated younger one (0°: 5965 ± 1677 arbitrary units (au)). During head-up tilting, AMP decreased (+ 60°: 4446 ± 1620 au, P < 0.001), whereas it increased during head-down tilting (− 30°: 7600 ± 2123 au, P < 0.001), as also observed in the younger cohort. Our observation that AMP, a metric potentially reflective of CC, is higher in the older compared to the younger cohort aligns with the expected decrease of CC with age. Furthermore, the robustness of AMP is reinforced by the consistent relative changes observed during tilt testing in both cohorts
    corecore