7 research outputs found

    Carriage of ESBL-producing Enterobacterales in wastewater treatment plant workers and surrounding residents - the AWARE Study

    Get PDF
    To investigate whether wastewater treatment plant (WWTP) workers and residents living in close proximity to a WWTP have elevated carriage rates of ESBL-producing Enterobacterales, as compared to the general population. From 2018 to 2020, we carried out a cross-sectional study in Germany, the Netherlands, and Romania among WWTP workers (N = 344), nearby residents (living ≤ 300~m away from WWTPs; N = 431) and distant residents (living ≥ 1000~m away = reference group; N = 1165). We collected information on potential confounders via questionnaire. Culture of participants' stool samples was performed with ChromID®-ESBL agar plates and species identification with MALDI-TOF-MS. We used logistic regression to estimate the odds ratio (OR) for carrying ESBL-producing E. coli (ESBL-EC). Sensitivity analyses included stratification by country and interaction models using country as secondary exposure. Prevalence of ESBL-EC was 11% (workers), 29% (nearby residents), and 7% (distant residents), and higher in Romania (28%) than in Germany (7%) and the Netherlands (6%). Models stratified by country showed that within the Romanian population, WWTP workers are about twice as likely (aOR = 2.34, 95% CI: 1.22-4.50) and nearby residents about three times as likely (aOR = 3.17, 95% CI: 1.80-5.59) to be ESBL-EC carriers, when compared with distant residents. In stratified analyses by country, we found an increased risk for carriage of ESBL-EC in Romanian workers and nearby residents. This effect was higher for nearby residents than for workers, which suggests that, for nearby residents, factors other than the local WWTP could contribute to the increased carriage

    Wastewater treatment plants, an “escape gate” for ESCAPE pathogens

    Get PDF
    Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats

    International Travel as a Risk Factor for Carriage of Extended-Spectrum β-Lactamase-Producing Escherichia coli in a Large Sample of European Individuals-The AWARE Study

    Get PDF
    Antibiotic resistance (AR) is currently a major threat to global health, calling for a One Health approach to be properly understood, monitored, tackled, and managed. Potential risk factors for AR are often studied in specific high-risk populations, but are still poorly understood in the general population. Our aim was to explore, describe, and characterize potential risk factors for carriage of Extended-Spectrum Beta-Lactamase-resistant Escherichia coli (ESBL-EC) in a large sample of European individuals aged between 16 and 67 years recruited from the general population in Southern Germany, the Netherlands, and Romania. Questionnaire and stool sample collection for this cross-sectional study took place from September 2018 to March 2020. Selected cultures of participants' stool samples were analyzed for detection of ESBL-EC. A total of 1183 participants were included in the analyses: 333 from Germany, 689 from the Netherlands, and 161 from Romania. Travels to Northern Africa (adjusted Odds Ratio, aOR 4.03, 95% Confidence Interval, CI 1.67-9.68), Sub-Saharan Africa (aOR 4.60, 95% CI 1.60-13.26), and Asia (aOR 4.08, 95% CI 1.97-8.43) were identified as independent risk factors for carriage of ESBL-EC. Therefore, travel to these regions should continue to be routinely asked about by clinical practitioners as possible risk factors when considering antibiotic therapy

    International Travel as a Risk Factor for Carriage of Extended-Spectrum β-Lactamase-Producing in a Large Sample of European Individuals-The AWARE Study.

    Get PDF
    Antibiotic resistance (AR) is currently a major threat to global health, calling for a One Health approach to be properly understood, monitored, tackled, and managed. Potential risk factors for AR are often studied in specific high-risk populations, but are still poorly understood in the general population. Our aim was to explore, describe, and characterize potential risk factors for carriage of Extended-Spectrum Beta-Lactamase-resistant Escherichia coli (ESBL-EC) in a large sample of European individuals aged between 16 and 67 years recruited from the general population in Southern Germany, the Netherlands, and Romania. Questionnaire and stool sample collection for this cross-sectional study took place from September 2018 to March 2020. Selected cultures of participants' stool samples were analyzed for detection of ESBL-EC. A total of 1183 participants were included in the analyses: 333 from Germany, 689 from the Netherlands, and 161 from Romania. Travels to Northern Africa (adjusted Odds Ratio, aOR 4.03, 95% Confidence Interval, CI 1.67-9.68), Sub-Saharan Africa (aOR 4.60, 95% CI 1.60-13.26), and Asia (aOR 4.08, 95% CI 1.97-8.43) were identified as independent risk factors for carriage of ESBL-EC. Therefore, travel to these regions should continue to be routinely asked about by clinical practitioners as possible risk factors when considering antibiotic therapy

    Wastewater treatment plants, an "escape gate" for ESCAPE pathogens.

    No full text
    Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats
    corecore