649 research outputs found

    Low-noise design issues for analog front-end electronics in 130 nm and 90 nm CMOS technologies

    Get PDF
    Deep sub-micron CMOS technologies provide wellestablished solutions to the implementation of low-noise front-end electronics in various detector applications. The IC designers’ effort is presently shifting to 130 nm CMOS technologies, or even to the next technology node, to implement readout integrated circuits for silicon strip and pixel detectors, in view of future HEP applications. In this work the results of noise measurements carried out on CMOS devices in 130 nm and 90 nm commercial processes are presented. The behavior of the 1/f and white noise terms is studied as a function of the device polarity and of the gate length and width. The study is focused on low current density applications where devices are biased in weak or moderate inversion. Data obtained from the measurements provide a powerful tool to establish design criteria in nanoscale CMOS processes for detector front-ends in LHC upgrades

    MAPS in 130 nm triple well CMOS technology for HEP applications

    Get PDF
    Deep N-well CMOS monolithic active pixel sensors (DNWMAPS) represent an alternative approach to signal processing in pixellated detectors for high energy physics experiments. Based on different resolution constraints, two prototype MAPS, suitable for applications requiring different detector pitch, have been developed and fabricated in 130 nm triple well CMOS technology. This work presents experimental results from the characterization of some test structures together with TCAD and Monte Carlo simulations intended to study the device properties in terms of charge diffusion and charge sharing among pixels

    Deep R-band counts of z~3 Lyman break galaxy candidates with the LBT

    Full text link
    Aims. We present a deep multiwavelength imaging survey (UGR) in 3 different fields, Q0933, Q1623, and COSMOS, for a total area of ~1500arcmin^2. The data were obtained with the Large Binocular Camera on the Large Binocular Telescope. Methods. To select our Lyman break galaxy (LBG) candidates, we adopted the well established and widely used color-selection criterion (U-G vs. G-R). One of the main advantages of our survey is that it has a wider dynamic color range for U-dropout selection than in previous studies. This allows us to fully exploit the depth of our R-band images, obtaining a robust sample with few interlopers. In addition, for 2 of our fields we have spectroscopic redshift information that is needed to better estimate the completeness of our sample and interloper fraction. Results. Our limiting magnitudes reach 27.0(AB) in the R band (5\sigma) and 28.6(AB) in the U band (1\sigma). This dataset was used to derive LBG candidates at z~3. We obtained a catalog with a total of 12264 sources down to the 50% completeness magnitude limit in the R band for each field. We find a surface density of ~3 LBG candidates arcmin^2 down to R=25.5, where completeness is >=95% for all 3 fields. This number is higher than the original studies, but consistent with more recent samples.Comment: in press by A&A, full LBG candidates' catalog will be available in electronic form at the CD

    Variable stars and stellar populations in Andromeda XXI: II. Another merged galaxy satellite of M31?

    Get PDF
    B and V time-series photometry of the M31 dwarf spheroidal satellite Andromeda XXI (And XXI) was obtained with the Large Binocular Cameras at the Large Binocular Telescope. We have identified 50 variables in And XXI, of which 41 are RR Lyrae stars (37 fundamental-mode RRab, and 4 first-overtone RRc, pulsators) and 9 are Anomalous Cepheids (ACs). The average period of the RRab stars ( = 0.64 days) and the period-amplitude diagram place And~XXI in the class of Oosterhoff II - Oosterhoff-Intermediate objects. From the average luminosity of the RR Lyrae stars we derived the galaxy distance modulus of (m-M)0_0=24.40±0.1724.40\pm0.17 mag, which is smaller than previous literature estimates, although still consistent with them within 1 σ\sigma. The galaxy color-magnitude diagram shows evidence for the presence of three different stellar generations in And~XXI: 1) an old (\sim 12 Gyr) and metal poor ([Fe/H]=-1.7 dex) component traced by the RR Lyrae stars; 2) a slightly younger (10-6 Gyr) and more metal rich ([Fe/H]=-1.5 dex) component populating the red horizontal branch, and 3) a young age (\sim 1 Gyr) component with same metallicity, that produced the ACs. Finally, we provide hints that And~XXI could be the result of a minor merging event between two dwarf galaxies.Comment: accepted for publications in Ap

    Allenamides Playing Domino: A Redox-Neutral Photocatalytic Synthesis of Functionalized 2-Aminofurans

    Get PDF
    A photoredox catalytic synthesis of functionalized 2-aminofurans is proposed starting from α-halo carbonyl substrates and N-allenamides. The protocol proves to be efficient and sustainable thanks to: i) the use of visible light as green energy source, ii) the redox-neutral nature of the transformation, allowing to avoid additives and strong oxidants, iii) the mild reaction conditions and the functional groups tolerance, iv) the low photocatalyst loading and the absence of excess reagents, v) the one-pot formation of three new bonds in a domino sequence. According to our mechanistic hypothesis, the transformation is configured as a double radical-polar crossover reaction, in which the photocatalyst is excited, oxidized and reduced twice for each molecule of 2-aminofuran produced. The novelty of the designed synthetic approach also lies in the use of N-allenamides as substrates, which, after the addition of the first electrophilic radical, preserve a further reactive π-system, making possible the addition of a second α-keto radical and enabling the installation of a keto functionality at a remote position. The good yields, the broad scope, and the possibility to further synthetically elaborate the obtained furans make this protocol particularly promising for the construction of useful products. (Figure presented.)

    Redetermination of tetra­kis(N,N-diethyl­dithio­carbamato)tin(IV)

    Get PDF
    The crystal structure of the title compound, [Sn(C5H10NS2)4], was originally determined by Harreld & Schlemper [Acta Cryst. (1971), B27, 1964–1969] using intensity data estimated from Weissenberg films. In comparison with the previous refinement, the current redetermination reveals anisotropic displacement parameters for all non-H atoms, localization of the H atoms, and higher precision of lattice parameters and inter­atomic distances. The complex features a distorted S6 octa­hedral coordination geometry for tin and a cis disposition of the monodentate dithio­carbamate ligands

    Understanding light quanta: First quantization of the free electromagnetic field

    Full text link
    The quantization of the electromagnetic field in vacuum is presented without reference to lagrangean quantum field theory. The equal time commutators of the fields are calculated from basic principles. A physical discussion of the commutators suggest that the electromagnetic fields are macroscopic emergent properties of more fundamental physical system: the photons

    Characterizing faint galaxies in the reionization epoch: LBT confirms two L<0.2L* sources at z=6.4 behind the CLASH/Frontier Fields cluster MACS0717.5+3745

    Get PDF
    We report the LBT/MODS1 spectroscopic confirmation of two images of faint Lyman alpha emitters at z=6.4z=6.4 behind the Frontier Fields galaxy cluster MACSJ0717.5+3745. A wide range of lens models suggests that the two images are highly magnified, with a strong lower limit of mu>5. These are the faintest z>6 candidates spectroscopically confirmed to date. These may be also multiple images of the same z=6.4 source as supported by their similar intrinsic properties, but the lens models are inconclusive regarding this interpretation. To be cautious, we derive the physical properties of each image individually. Thanks to the high magnification, the observed near-infrared (restframe ultraviolet) part of the spectral energy distributions and Ly-alpha lines are well detected with S/N(m_1500)>~10 and S/N(Ly-alpha)~10-15. Adopting mu>5, the absolute magnitudes, M_1500, and Ly-alpha fluxes, are fainter than -18.7 and 2.8x10^(-18)erg/s/cm2, respectively. We find a very steep ultraviolet spectral slope beta=-3.0+/-0.5 (F_lambda=lambda^(beta)), implying that these are very young, dust-free and low metallicity objects, made of standard stellar populations or even extremely metal poor stars (age<~30Myr, E(B-V)=0 and metallicity 0.0-0.2 Z/Zsolar). The objects are compact (< 1 kpc^(2)), and with a stellar mass M* < 10^(8) M_solar. The very steep beta, the presence of the Ly-alpha line and the intrinsic FWHM (<300 km/s) of these newborn objects do not exclude a possible leakage of ionizing radiation. We discuss the possibility that such faint galaxies may resemble those responsible for cosmic reionization.Comment: Accepted by ApJL; 6 pages, 4 figures, 1 table, emulateapj forma

    Real-Time Oil Leakage Detection on Aftermarket Motorcycle Damping System with Convolutional Neural Networks

    Get PDF
    In this work, we describe in detail how Deep Learning and Computer Vision can help to detect fault events of the AirTender system, an aftermarket motorcycle damping system component. One of the most effective ways to monitor the AirTender functioning is to look for oil stains on its surface. Starting from real-time images, AirTender is first detected in the motorbike suspension system, simulated indoor, and then, a binary classifier determines whether AirTender is spilling oil or not. The detection is made with the help of the Yolo5 architecture, whereas the classification is carried out with the help of a suitably designed Convolutional Neural Network, OilNet40. In order to detect oil leaks more clearly, we dilute the oil in AirTender with a fluorescent dye with an excitation wavelength peak of approximately 390 nm. AirTender is then illuminated with suitable UV LEDs. The whole system is an attempt to design a low-cost detection setup. An on-board device, such as a mini-computer, is placed near the suspension system and connected to a full hd camera framing AirTender. The on-board device, through our Neural Network algorithm, is then able to localize and classify AirTender as normally functioning (non-leak image) or anomaly (leak image)
    corecore