8 research outputs found

    Methods to Unravel Pathways of Reactive Oxygen Species in the Photodynamic Inactivation of Bacteria

    No full text
    Different experimental conditions can be used to detect the presence of reactive oxygen species (ROS) in the photodynamic inactivation of microorganisms. Here, we describe the effect of the media and the addition of ROS scavengers to obtain insight about the oxidative processes that take place during the photokilling of bacteria. In addition, 9,10-dimethylanthracene was used to sense the generation of singlet molecular oxygen, O2(1Δg), in microbial cells. Thus, the contribution of type I or type II pathways in the photocytotoxicity action can be rapidly detected and compared between different photosensitizers.Fil: Gsponer, Natalia Soledad. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; ArgentinaFil: Durantini, Edgardo Néstor. Universidad Nacional de Córdoba. Facultad de Ciencias Químicas. Departamento de Química Orgánica; Argentina. Universidad Nacional de Río Cuarto. Instituto para el Desarrollo Agroindustrial y de la Salud. - Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto para el Desarrollo Agroindustrial y de la Salud; Argentin

    Effective dispersion of fullerene with methacrylate copolymer in organic solvent and poly(methyl methacrylate)

    Get PDF
    Dispersion of fullerene, C 60, by addition of polymethacrylate dispersant in methyl methacrylate (MMA) and incorporation of C 60 into poly(methyl methacrylate) (PMMA) were investigated. Copolymers synthesized by radical copolymerization of MMA and 2-naphthyl methacrylate (NMA), poly(MMA-co-NMA), effectively dispersed C 60 in MMA to form clusters of 20 nm. In these cases, addition of minimal 110 naphthyl groups per unit C 60 molecule afforded to give clusters with minimum of 20 nm sizes. Furthermore, block copolymers, poly(MMA-b-NMA) with MMA/NMA mole ratio from 12:1 to 20:1, also efficiently dispersed C 60 to give formation of clusters of 20 nm size by addition of minimal 40 naphthyl groups per unit C 60 molecule, which was corresponding to approximate nine layers of naphthyl group in block copolymer adsorbed on the surface of the cluster. Hybrid films of C 60/PMMA, prepared by casting of C 60-dispersed solution containing PMMA, exhibited absorbance at 400 nm linearly increased with C 60 content

    Bacterial autoaggregation

    No full text
    corecore