3 research outputs found

    Facial analysis technology for the detection of Down syndrome in the Democratic Republic of the Congo.

    No full text
    Down syndrome is one of the most common chromosomal anomalies affecting the worlds population, with an estimated frequency of 1 in 700 live births. Despite its relatively high prevalence, diagnostic rates based on clinical features have remained under 70% for most of the developed world and even lower in countries with limited resources. While genetic and cytogenetic confirmation greatly increases the diagnostic rate, such resources are often non-existent in many low- and middle-income countries, particularly in Sub-Saharan Africa. To address the needs of countries with limited resources, the implementation of mobile, user-friendly and affordable technologies that aid in diagnosis would greatly increase the odds of success for a child born with a genetic condition. Given that the Democratic Republic of the Congo is estimated to have one of the highest rates of birth defects in the world, our team sought to determine if smartphone-based facial analysis technology could accurately detect Down syndrome in individuals of Congolese descent. Prior to technology training, we confirmed the presence of trisomy 21 using low-cost genomic applications that do not need advanced expertise to utilize and are available in many low-resourced countries. Our software technology trained on 132 Congolese subjects had a significantly improved performance (91.67% accuracy, 95.45% sensitivity, 87.88% specificity) when compared to previous technology trained on individuals who are not of Congolese origin (p < 5%). In addition, we provide the list of most discriminative facial features of Down syndrome and their ranges in the Congolese population. Collectively, our technology provides low-cost and accurate diagnosis of Down syndrome in the local population

    Poliovirus-Neutralizing Antibody Seroprevalence and Vaccine Habits in a Vaccine-Derived Poliovirus Outbreak Region in the Democratic Republic of Congo in 2018: The Impact on the Global Eradication Initiative.

    No full text
    Despite the successes in wild-type polio eradication, poor vaccine coverage in the DRC has led to the occurrence of circulating vaccine-derived poliovirus outbreaks. This cross-sectional population-based survey provides an update to previous poliovirus-neutralizing antibody seroprevalence studies in the DRC and quantifies risk factors for under-immunization and parental knowledge that guide vaccine decision making. Among the 964 children between 6 and 35 months in our survey, 43.8% (95% CI: 40.6-47.0%), 41.1% (38.0-44.2%), and 38.0% (34.9-41.0%) had protective neutralizing titers to polio types 1, 2, and 3, respectively. We found that 60.7% of parents reported knowing about polio, yet 25.6% reported knowing how it spreads. Our data supported the conclusion that polio outreach efforts were successfully connecting with communities-79.4% of participants had someone come to their home with information about polio, and 88.5% had heard of a polio vaccination campaign. Additionally, the odds of seroreactivity to only serotype 2 were far greater in health zones that had a history of supplementary immunization activities (SIAs) compared to health zones that did not. While SIAs may be reaching under-vaccinated communities as a whole, these results are a continuation of the downward trend of seroprevalence rates in this region
    corecore