10,994 research outputs found

    Wetting layer thickness and early evolution of epitaxially strained thin films

    Full text link
    We propose a physical model which explains the existence of finite thickness wetting layers in epitaxially strained films. The finite wetting layer is shown to be stable due to the variation of the non-linear elastic free energy with film thickness. We show that anisotropic surface tension gives rise to a metastable enlarged wetting layer. The perturbation amplitude needed to destabilize this wetting layer decreases with increasing lattice mismatch. We observe the development of faceted islands in unstable films.Comment: 4 pages, 3 eps figure

    Astronomy using basic Mark 2 very long baseline interferometry

    Get PDF
    Two experiments were performed in April and September 1976 to determine precise positions of radio sources using conventional Mark 2 VLBI techniques. Four stations in the continental United States observed at a wavelength of 18 cm. The recording bandwidth was 2 MHz. The preliminary results using analyses of fringe rate and delay are discussed and the source positions compared with the results of other measurements

    The effect of quantization on the FCIQMC sign problem

    No full text
    The sign problem in Full Configuration Interaction Quantum Monte Carlo (FCIQMC) without annihilation can be understood as an instability of the psi-particle population to the ground state of the matrix obtained by making all off-diagonal elements of the Hamiltonian negative. Such a matrix, and hence the sign problem, is basis dependent. In this paper we discuss the properties of a physically important basis choice: first versus second quantization. For a given choice of single-particle orbitals, we identify the conditions under which the fermion sign problem in the second quantized basis of antisymmetric Slater determinants is identical to the sign problem in the first quantized basis of unsymmetrized Hartree products. We also show that, when the two differ, the fermion sign problem is always less severe in the second quantized basis. This supports the idea that FCIQMC, even in the absence of annihilation, improves the sign problem relative to first quantized methods. Finally, we point out some theoretically interesting classes of Hamiltonians where first and second quantized sign problems differ, and others where they do not.Comment: 4 pages w/ 2 page appendix, 2 figures, 1 tabl

    ECHO user's guide

    Get PDF
    There are no author-identified significant results in this report

    Empirical model for quasi direct current interruption with a convoluted arc

    Get PDF
    This contribution considers various aspects of a quasi direct current, convoluted arc produced by a magnetic field (B-field) connected in parallel with an RLC circuit that have not been considered in combination. These aspects are the arc current limitation due to the arc convolution, changes in arc resistance due to the B-field and material ablation, and the relative significance of the RLC circuit in producing an artificial current zero. As a result, it has been possible to produce an empirical equation for predicting the current interruption capability in terms of the B-field magnitude and RLC components

    Model of surface instabilities induced by stress

    Full text link
    We propose a model based on a Ginzburg-Landau approach to study a strain relief mechanism at a free interface of a non-hydrostatically stressed solid, commonly observed in thin-film growth. The evolving instability, known as the Grinfeld instability, is studied numerically in two and three dimensions. Inherent in the description is the proper treatment of nonlinearities. We find these nonlinearities can lead to competitive coarsening of interfacial structures, corresponding to different wavenumbers, as strain is relieved. We suggest ways to experimentally measure this coarsening.Comment: 4 pages (3 figures included

    Stability of Solid State Reaction Fronts

    Full text link
    We analyze the stability of a planar solid-solid interface at which a chemical reaction occurs. Examples include oxidation, nitridation, or silicide formation. Using a continuum model, including a general formula for the stress-dependence of the reaction rate, we show that stress effects can render a planar interface dynamically unstable with respect to perturbations of intermediate wavelength

    Epitaxial growth in dislocation-free strained alloy films: Morphological and compositional instabilities

    Full text link
    The mechanisms of stability or instability in the strained alloy film growth are of intense current interest to both theorists and experimentalists. We consider dislocation-free, coherent, growing alloy films which could exhibit a morphological instability without nucleation. We investigate such strained films by developing a nonequilibrium, continuum model and by performing a linear stability analysis. The couplings of film-substrate misfit strain, compositional stress, deposition rate, and growth temperature determine the stability of film morphology as well as the surface spinodal decomposition. We consider some realistic factors of epitaxial growth, in particular the composition dependence of elastic moduli and the coupling between top surface and underlying bulk of the film. The interplay of these factors leads to new stability results. In addition to the stability diagrams both above and below the coherent spinodal temperature, we also calculate the kinetic critical thickness for the onset of instability as well as its scaling behavior with respect to misfit strain and deposition rate. We apply our results to some real growth systems and discuss the implications related to some recent experimental observations.Comment: 26 pages, 13 eps figure

    Comparison of VLBI, TV and traveling clock techniques for time transfer

    Get PDF
    A three part experiment was conducted to develop and compare time transfer techniques. The experiment consisted of (1) a very long baseline interferometer (VLBI), (2) a high precision portable clock time transfer system between the two sites, and (3) a television time transfer. A comparison of the VLBI and traveling clock shows each technique can perform satisfactorily at the five nsec level. There was a systematic offset of 59 nsec between the two methods, which we attributed to a difference in epochs between VLBI formatter and station clock. The VLBI method had an internal random error of one nsec at the three sigma level for a two day period. Thus, the Mark II system performed well, and VLBI shows promise of being an accurate method of time transfer. The TV system, which had technical problems during the experiment, transferred time with a random error of about 50 nsec

    ECHO User\u27s Guide

    Get PDF
    Over the past several years, the ECHO classifiers have been developed to incorporate spatial as well as spectral information into the classifier decision criteria. This document contains a comprehensive description of the functional organization of the supervised and the nonsupervised ECHO processes, the manner in for individuals who intend to make use of the ECHO classifiers, although it is also of value to those wanting to understand of implement the ECHO algorithms
    • …
    corecore