33 research outputs found

    Detection of viruses by inflammasomes.

    No full text
    The innate immune system has evolved mechanisms to keep the viral infection under control and repair damaged tissues. Several pathways can identify the presence of pathogenic components, such as viral nucleic acids and viral proteins. Also, the innate immune system can detect cellular and tissue perturbations caused by infections. Inflammasomes are cellular pieces of machinery that can detect a pathogen's presence and its possible impact on cellular integrity. Thereby several inflammasomes, including the NLRP3 inflammasome and the AIM2 inflammasome, contribute to antiviral innate immunity. Inflammation driven by inflammasomes promotes immune defenses and initiate repair mechanisms. However, its overactivation may trigger acute inflammatory responses that may harm the host. This pathologic activation could contribute to the hyperinflammatory response observed in patients infected with viruses, including influenza, SARS, and possibly SARS-CoV2

    NLRP3 leucine-rich repeats control induced and spontaneous inflammasome activation in cryopyrin-associated periodic syndrome.

    No full text
    Cryopyrin-associated periodic syndromes (CAPS) comprise a group of rare autoinflammatory diseases caused by gain-of-function mutations in the NLRP3 gene. NLRP3 contains a leucine-rich repeats (LRR) domain with a highly conserved exonic organization that is subjected to extensive alternative splicing. Aberrant NLRP3 inflammasome assembly in CAPS causes chronic inflammation, however the mechanisms regulating inflammasome function remain unclear. We aimed to elucidate the mechanisms regulating NLRP3 mediated autoinflammation in human disease, characterizing the role of LRR in inflammasome activation. We analyzed sequence read archive data to characterize the patten of NLRP3 splicing in human monocytes and investigated the role of each LRR-coding exon in inflammasome regulation in genetically modified U937 cells representing CAPS and healthy conditions. We show detection of a range of NLRP3 splice variants in human primary cells and monocytic cell lines including two yet undescribed splice variants. We observe that LPS impact the abundancy of certain splice variants suggesting they may regulate NLRP3 activation by affecting alternative splicing. We showed that exons 4,5,7 and 9 are essential for inflammasome function, both in the context of wild type NLRP3 activation by the agonist molecule nigericin and in a model of CAPS-mediated NLRP3 inflammasome assembly. Moreover, the SGT1-NLRP3 interaction is decreased in non-functional variants, suggesting that alternative splicing may regulate the recruitment of proteins that facilitate inflammasome assembly. These findings demonstrate the contribution of LRR domain in inflammasome function and suggest that navigating LRR exon usage within NLRP3 is sufficient to dampen inflammasome assembly in CAPS

    CDC42 regulates PYRIN inflammasome assembly.

    No full text
    The PYRIN inflammasome pathway is part of the innate immune response against invading pathogens. Unprovoked continuous activation of the PYRIN inflammasome drives autoinflammation and underlies several autoinflammatory diseases, including familial Mediterranean fever (FMF) syndrome. PYRIN inflammasome formation requires PYRIN dephosphorylation and oligomerization by molecular mechanisms that are poorly understood. Here, we use a functional genetics approach to find regulators of PYRIN inflammasome function. We identify the small Rho GTPase CDC42 to be essential for PYRIN activity and oligomerization of the inflammasome complex. While CDC42 catalytic activity enhances PYRIN phosphorylation, thereby inhibiting it, the inflammasome-supportive role of CDC42 is independent of its GDP/GTP binding or hydrolysis capacity and does not affect PYRIN dephosphorylation. These findings identify the dual role of CDC42 as a regulator of PYRIN and as a critical player required for PYRIN inflammasome assembly in health and disease

    Endocytosed soluble cowpox virus protein CPXV012 inhibits antigen cross-presentation in human monocyte-derived dendritic cells

    No full text
    Viruses may interfere with the MHC class I antigen presentation pathway in order to avoid CD8+ T cell-mediated immunity. A key target within this pathway is the peptide transporter TAP. This transporter plays a central role in MHC class I-mediated peptide presentation of endogenous antigens. In addition, TAP plays a role in antigen cross-presentation of exogenously derived antigens by dendritic cells (DCs). In this study, a soluble form of the cowpox virus TAP inhibitor CPXV012 is synthesized for exogenous delivery into the antigen cross-presentation route of human monocyte-derived (mo)DCs. We show that soluble CPXV012 localizes to TAP+ compartments that carry internalized antigen and is a potent inhibitor of antigen cross-presentation. CPXV012 stimulates the prolonged deposition of antigen fragments in storage compartments of moDCs, as a result of reduced endosomal acidification and reduced antigen proteolysis when soluble CPXV012 is present. Thus, a dual function can be proposed for CPXV012: inhibition of TAP-mediated peptide transport and inhibition of endosomal antigen degradation. We propose this second function for soluble CPXV012 can serve to interfere with antigen cross-presentation in a peptide transport-independent manner

    Acid-activated structural reorganization of the Rift Valley fever virus Gc fusion protein

    No full text
    Entry of the enveloped Rift Valley fever virus (RVFV) into its host cell is mediated by the viral glycoproteins Gn and Gc. We investigated the RVFV entry process and its pH-dependent activation mechanism in particular using our recently developed nonspreading RVFV particle system. Entry of the virus into the host cell was efficiently inhibited by lysosomotropic agents that prevent endosomal acidification and by compounds that interfere with dynamin- and clathrin-dependent endocytosis. Exposure of plasma membrane-bound virions to an acidic pH

    Preliminary Evaluation of a Bunyavirus Vector for Cancer Immunotherapy

    No full text
    Replicon particles of Rift Valley fever virus, referred to as nonspreading Rift Valley fever virus (NSR), are intrinsically safe and highly immunogenic. Here, we demonstrate that NSR-infected human dendritic cells can activate CD8+ T cells in vitro and that prophylactic and therapeutic vaccinations of mice with NSR encoding a tumor-associated CD8 peptide can control the outgrowth of lymphoma cells in vivo. These results suggest that the NSR system holds promise for cancer immunotherapy
    corecore