21 research outputs found

    Highly pathogenic avian influenza subtype H5Nx clade 2.3.4.4 outbreaks in Dutch poultry farms, 2014–2018 : Clinical signs and mortality

    Get PDF
    In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017–2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.</p

    Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and associated humans in the Netherlands

    Get PDF
    In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and humans on farms. High number of farm infections (68/126) in minks and farm workers (>50% of farms) were detected, with limited community spread. Three of five initial introductions of SARS-CoV-2 led to subsequent spread between mink farms until November 2020. Viruses belonging to the largest cluster acquired an amino acid substitution in the receptor binding domain of the Spike protein (position 486), evolved faster and spread longer and more widely. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combining genetic information with epidemiological information when investigating outbreaks at the animal-human interface

    SARS-CoV-2 infection in cats and dogs in infected mink farms

    Get PDF
    Animals like mink, cats and dogs are susceptible to SARS-CoV-2 infection. In the Netherlands, 69 out of 127 mink farms were infected with SARS-CoV-2 between April and November 2020 and all mink on infected farms were culled after SARS-CoV-2 infection to prevent further spread of the virus. On some farms, (feral) cats and dogs were present. This study provides insight into the prevalence of SARS-CoV-2-positive cats and dogs in 10 infected mink farms and their possible role in transmission of the virus. Throat and rectal swabs of 101 cats (12 domestic and 89 feral cats) and 13 dogs of 10 farms were tested for SARS-CoV-2 using PCR. Serological assays were performed on serum samples from 62 adult cats and all 13 dogs. Whole Genome Sequencing was performed on one cat sample. Cat-to-mink transmission parameters were estimated using data from all 10 farms. This study shows evidence of SARS-CoV-2 infection in 12 feral cats and 2 dogs. Eleven cats (18%) and two dogs (15%) tested serologically positive. Three feral cats (3%) and one dog (8%) tested PCR-positive. The sequence generated from the cat throat swab clustered with mink sequences from the same farm. The calculated rate of mink-to-cat transmission showed that cats on average had a chance of 12% (95%CI 10%–18%) of becoming infected by mink, assuming no cat-to-cat transmission. As only feral cats were infected it is most likely that infections in cats were initiated by mink, not by humans. Whether both dogs were infected by mink or humans remains inconclusive. This study presents one of the first reports of interspecies transmission of SARS-CoV-2 that does not involve humans, namely mink-to-cat transmission, which should also be considered as a potential risk for spread of SARS-CoV-2

    Transmission of SARS-CoV-2 on mink farms between humans and mink and back to humans

    Get PDF
    Animal experiments have shown that nonhuman primates, cats, ferrets, hamsters, rabbits, and bats can be infected by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In addition, SARS-CoV-2 RNA has been detected in felids, mink, and dogs in the field. Here, we describe an in-depth investigation using whole-genome sequencing of outbreaks on 16 mink farms and the humans living or working on these farms. We conclude that the virus was initially introduced by humans and has since evolved, most likely reflecting widespread circulation among mink in the beginning of the infection period, several weeks before detection. Despite enhanced biosecurity, early warning surveillance, and immediate culling of animals in affected farms, transmission occurred between mink farms in three large transmission clusters with unknown modes of transmission. Of the tested mink farm residents, employees, and/or individuals with whom they had been in contact, 68% had evidence of SARS-CoV-2 infection. Individuals for which whole genomes were available were shown to have been infected with strains with an animal sequence signature, providing evidence of animal-to-human transmission of SARS-CoV-2 within mink farms

    Adaptation, spread and transmission of SARS-CoV-2 in farmed minks and related humans in the Netherlands

    Get PDF
    In the first wave of the COVID-19 pandemic (April 2020), SARS-CoV-2 was detected in farmed minks and genomic sequencing was performed on mink farms and farm personnel. Here, we describe the outbreak and use sequence data with Bayesian phylodynamic methods to explore SARS-CoV-2 transmission in minks and related humans on farms. High number of farm infections (68/126) in minks and farm related personnel (>50% of farms) were detected, with limited spread to the general human population. Three of five initial introductions of SARS-CoV-2 lead to subsequent spread between mink farms until November 2020. The largest cluster acquired a mutation in the receptor binding domain of the Spike protein (position 486), evolved faster and spread more widely and longer. Movement of people and distance between farms were statistically significant predictors of virus dispersal between farms. Our study provides novel insights into SARS-CoV-2 transmission between mink farms and highlights the importance of combing genetic information with epidemiological information at the animal-human interface

    Manifestation of SARS-CoV-2 Infections in Mink Related to Host-, Virus- and Farm-Associated Factors, The Netherlands 2020

    Get PDF
    SARS-CoV-2 outbreaks on 69 Dutch mink farms in 2020 were studied to identify risk factors for virus introduction and transmission and to improve surveillance and containment measures. Clinical signs, laboratory test results, and epidemiological aspects were investigated, such as the date and reason of suspicion, housing, farm size and distances, human contact structure, biosecurity measures, and presence of wildlife, pets, pests, and manure management. On seven farms, extensive random sampling was performed, and age, coat color, sex, and clinical signs were recorded. Mild to severe respiratory signs and general diseases such as apathy, reduced feed intake, and increased mortality were detected on 62/69 farms. Throat swabs were more likely to result in virus detection than rectal swabs. Clinical signs differed between virus clusters and were more severe for dark-colored mink, males, and animals infected later during the year. Geographical clustering was found for one virus cluster. Shared personnel could explain some cases, but other transmission routes explaining farm-to-farm spread were not elucidated. An early warning surveillance system, strict biosecurity measures, and a (temporary) ban on mink farming and vaccinating animals and humans can contribute to reducing the risks of the virus spreading and acquisition of potential mutations relevant to human and animal health

    Highly pathogenic avian influenza subtype H5Nx clade 2.3.4.4 outbreaks in Dutch poultry farms, 2014–2018 : Clinical signs and mortality

    Get PDF
    In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017–2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs.</p

    Highly pathogenic avian influenza subtype H5Nx clade 2.3.4.4 outbreaks in Dutch poultry farms, 2014-2018: Clinical signs and mortality

    Get PDF
    In recent years, different subtypes of highly pathogenic avian influenza (HPAI) viruses caused outbreaks in several poultry types worldwide. Early detection of HPAI virus infection is crucial to reduce virus spread. Previously, the use of a mortality ratio threshold to expedite notification of suspicion in layer farms was proposed. The purpose of this study was to describe the clinical signs reported in the early stages of HPAI H5N8 and H5N6 outbreaks on chicken and Pekin duck farms between 2014 and 2018 in the Netherlands and compare them with the onset of an increased mortality ratio (MR). Data on daily mortality and clinical signs from nine egg-producing chicken farms and seven Pekin duck farms infected with HPAI H5N8 (2014 and 2016) and H5N6 (2017-2018) in the Netherlands were analysed. In 12 out of 15 outbreaks for which a MR was available, MR increase preceded or coincided with the first observation of clinical signs by the farmer. In one chicken and two Pekin duck outbreaks, clinical signs were observed prior to MR increase. On all farms, veterinarians observed clinical signs of general disease. Nervous or locomotor signs were reported in all Pekin duck outbreaks, but only in two chicken outbreaks. Other clinical signs were observed less frequently in both chickens and Pekin ducks. Compared to veterinarians, farmers observed and reported clinical signs, especially respiratory and gastrointestinal signs, less frequently. This case series suggests that a MR with a set threshold could be an objective parameter to detect HPAI infection on chicken and Pekin duck farms at an early stage. Observation of clinical signs may provide additional indication for farmers and veterinarians for notifying a clinical suspicion of HPAI infection. Further assessment and validation of a MR threshold in Pekin ducks are important as it could serve as an important tool in HPAI surveillance programs

    Occupational and environmental exposure to SARS-CoV-2 in and around infected mink farms

    No full text
    Objective Unprecedented SARS-CoV-2 infections in farmed minks raised immediate concerns regarding transmission to humans and initiated intensive environmental investigations to assess occupational and environmental exposure. Methods Air sampling was performed at infected Dutch mink farms, at farm premises and at nearby residential sites. A range of other environmental samples were collected from minks' housing units, including bedding materials. SARS-CoV-2 RNA was analysed in all samples by quantitative PCR. Results Inside the farms, considerable levels of SARS-CoV-2 RNA were found in airborne dust, especially in personal inhalable dust samples (approximately 1000-10 000 copies/m 3). Most of the settling dust samples tested positive for SARS-CoV-2 RNA (82%, 75 of 92). SARS-CoV-2 RNA was not detected in outdoor air samples, except for those collected near the entrance of the most recently infected farm. Many samples of minks' housing units and surfaces contained SARS-CoV-2 RNA. Conclusions Infected mink farms can be highly contaminated with SARS-CoV-2 RNA. This warns of occupational exposure, which was substantiated by considerable SARS-CoV-2 RNA concentrations in personal air samples. Dispersion of SARS-CoV-2 to outdoor air was found to be limited and SARS-CoV-2 RNA was not detected in air samples collected beyond farm premises, implying a negligible risk of environmental exposure to nearby communities. Our occupational and environmental risk assessment is in line with whole genome sequencing analyses showing mink-to-human transmission among farm workers, but no indications of direct zoonotic transmission events to nearby communities
    corecore