27 research outputs found
Ligands in crystal structures that aid in functional characterization
An overview and commentary on the value of liganded structures emerging from the JCSG structural genomics initiative
A Shotgun Proteomic Method for the Identification of Membrane-Embedded Proteins and Peptides
Integral membrane proteins perform crucial cellular functions and are the targets for the majority of pharmaceutical agents. However, the hydrophobic nature of their membrane-embedded domains makes them difficult to work with. Here, we describe a shotgun proteomic method for the high-throughput analysis of the membrane-embedded transmembrane domains of integral membrane proteins which extends the depth of coverage of the membrane proteome
Aerobic scope protection reduces ectotherm growth under warming
1. Temperature has a dramatic effect on the physiology of ectothermic animals, impacting most of their biology. When temperatures increase above optimal for an animal, their growth gradually decreases. The main mechanism behind this growth rate reduction is unknown. 2. Here, we suggest the 'aerobic scope protection' hypothesis as a mechanistic explanation for the reduction in growth. 3. After a meal, metabolic rate, and hence oxygen consumption rate, transiently increase in a process called specific dynamic action (SDA). At warmer temperatures, the SDA response usually becomes temporally compressed, leading to a higher peak oxygen consumption rate. This peak in oxygen consumption rate risks taking up much of the animal's aerobic scope (the difference between resting and maximum rates of oxygen consumption), which would leave little residual aerobic scope for other aerobic functions. 4. We propose that water-breathing ectothermic animals will protect their postprandial residual aerobic scope by reducing meal sizes in order to regulate the peak SDA response during times of warming, leading to reductions in growth. 5. This hypothesis is consistent with the published literature on fishes, and we provide predictions that can be tested.Peer reviewe
Global disparities in SARS-CoV-2 genomic surveillance
Genomic sequencing is essential to track the evolution and spread of SARS-CoV-2, optimize molecular tests, treatments, vaccines, and guide public health responses. To investigate the global SARS-CoV-2 genomic surveillance, we used sequences shared via GISAID to estimate the impact of sequencing intensity and turnaround times on variant detection in 189 countries. In the first two years of the pandemic, 78% of high-income countries sequenced >0.5% of their COVID-19 cases, while 42% of low- and middle-income countries reached that mark. Around 25% of the genomes from high income countries were submitted within 21 days, a pattern observed in 5% of the genomes from low- and middle-income countries. We found that sequencing around 0.5% of the cases, with a turnaround time <21 days, could provide a benchmark for SARS-CoV-2 genomic surveillance. Socioeconomic inequalities undermine the global pandemic preparedness, and efforts must be made to support low- and middle-income countries improve their local sequencing capacity
31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two
Background
The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd.
Methods
We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background.
Results
First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001).
Conclusions
In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
Profiling enzyme activities in vivo using click chemistry methods
Methods for profiling the activity of enzymes in vivo are needed to understand the role that these proteins and their endogenous regulators play in physiological and pathological processes. Recently, we introduced a tag-free strategy for activity-based protein profil-ing (ABPP) that utilizes the copper(I)-catalyzed azidealkyne cycloaddition reaction (“click chemistry”) to analyze the functional state of enzymes in living cells and organisms. Here, we report a detailed characterization of the reaction parameters that affect click chemistry-based ABPP and identify conditions that maximize the speed, sensitivity, and bioorthogonality of this approach. Using these optimized conditions, we compare the enzyme activity profiles of living and homogenized breast cancer cells, resulting in the iden-tification of several enzymes that are labeled by activity-based probes in situ but not in vitro