255 research outputs found

    Preanalytical requirements of urinalysis

    Get PDF
    Urine may be a waste product, but it contains an enormous amount of information. Well-standardized procedures for collection, transport, sample preparation and analysis should become the basis of an effective diagnostic strategy for urinalysis. As reproducibility of urinalysis has been greatly improved due to recent technological progress, preanalytical requirements of urinalysis have gained importance and have become stricter. Since the patients themselves often sample urine specimens, urinalysis is very susceptible to preanalytical issues. Various sampling methods and inappropriate specimen transport can cause important preanalytical errors. The use of preservatives may be helpful for particular analytes. Unfortunately, a universal preservative that allows a complete urinalysis does not (yet) exist. The preanalytical aspects are also of major importance for newer applications (e.g. metabolomics). The present review deals with the current preanalytical problems and requirements for the most common urinary analytes

    Renal tubular epithelial cells add value in the diagnosis of upper urinary tract pathology

    Get PDF
    Background: Diagnosis of upper urinary tract infections (UTI) is challenging. We evaluated the analytical and diagnostic performance characteristics of renal tubular epithelial cells (RTECs) and transitional epithelial cells (TECs) on the Sysmex UF-5000 urine sediment analyzer. Methods: Urinary samples from 506 patients presenting with symptoms of a UTI were collected. Only samples for which a urinary culture was available were included. Analytical (imprecision, accuracy, stability and correlation with manual microscopy) and diagnostic performance (sensitivity and specificity) were evaluated. Results: The Sysmex UF-5000 demonstrated a good analytical performance. Depending on the storage time, storage conditions (2-8 degrees C or 20-25 degrees C) and urinary pH, RTECs and TECs were stable in urine for at least 4 h. Using Passing-Bablok and Bland-Altman analysis, an acceptable agreement was observed between the manual and automated methods. Compared to TECs, RTECs demonstrated an acceptable diagnostic performance for the diagnosis of upper UTI. Conclusions: While TECs do not seem to serve as a helpful marker, increased urinary levels of RTECs add value in the diagnosis of upper UTI and may be helpful in the discrimination between upper and lower UTIs

    Value and pitfalls in iodine fortification and supplementation in the 21st century

    Get PDF
    Although the number of iodine-deficient countries has been reduced by almost 50% over the last decade, it still remains a frequently misunderstood health problem. The most devastating effects of iodine deficiency occur during fetal development and childhood, periods in which sufficient iodine delivery remains critical. Besides the determination of thyroid size, the concentration of urinary iodine, serum thyroid-stimulating hormone and serum thyroglobulin are useful biomarkers to assess iodine status. Severe iodine deficiency is associated with neurological complications, cretinism, endemic goitre development, hypothyroidism, decreased fertility and increased infant mortality. The recommended iodine supplementation strategies are based on correction of iodine deficiency, close monitoring and evaluation of iodine administration, cooperation of the salt industry, training of local health care professionals and education of the population. Besides the multiple beneficial effects of supplementation, we present in this review a critical look at the possible side effects

    Estimated urinary osmolality based on combined urinalysis parameters : a critical evaluation

    Get PDF
    Background: Urinary conductivity allows a coarse prediction of urinary osmolality in most cases but is insensitive to the osmolal contribution of uncharged particles and the presence of roentgen contrast media. Urinary osmolality can be estimated on the recently introduced Sysmex UF-5000 urine analyzer using conductivity. In this study, we evaluated the analytical performance of this research parameter. Secondly, we aimed to improve the manufacturer's algorithm for estimating urinary osmolality, based on standard urinalysis parameters (creatinine, glucose, relative density). Methods: The analytical performance was determined and a prediction model to estimate urinary osmolality based on urinalysis parameters was developed. We further developed and validated a prediction model using another set of routine urine samples. In addition, the influence of roentgen contrast media on urinary osmolality was studied. Results: The within-run and between imprecision for osmolality and conductivity measured on the Sysmex UF-5000 ranged from 1.1% to 4.9% and 0.7% to 4.8%, respectively. Multiple regression analysis revealed urinary creatinine, conductivity and relative density to be the strongest predictors to estimate urinary osmolality. A mean difference of 1.3 mOsm/kg between measured and predicted osmolality demonstrated that the predictive performance of our model was favorable. An excellent correlation between the relative density and % contrast media was demonstrated. Conclusions: Urinary osmolality is an important parameter for assessing specimen dilution in urinalysis. Urinary conductivity, along with relative density and urinary creatinine allows a coarse prediction of urinary osmolality and is insensitive to the osmolal contribution of uncharged particles and the presence of roentgen contrast media
    corecore