533 research outputs found

    Historical review of missile aerodynamic developments

    Get PDF
    The development of missiles from early history up to about 1970 is discussed. Early unpowered missiles beyond the rock include the spear, the bow and arrow, the gun and bullet, and the cannon and projectile. Combining gunpowder with projectiles resulted in the first powered missiles. In the early 1900's, the development of guided missiles was begun. Significant advances in missile technology were made by German scientists during World War II. The dispersion of these advances to other countries following the war resulted in accelerating the development of guided missiles. In the late 1940's and early 1950's there was a proliferation in the development of missile systems in many countries. These developments were based primarily on experimental work and on relatively crude analytical techniques. Discussed here are some of the missile systems that were developed up to about 1970; some of the problems encountered; the development of an experimental data base for use with missiles; and early efforts to develop analytical methods applicable to missiles

    Innovation in Aerodynamic Design Features of Soviet Missiles

    Get PDF
    Wind tunnel investigations of some tactical and strategic missile systems developed by the former Soviet Union have been included in the basic missile research programs of the NACA/NASA. Studies of the Soviet missiles sometimes revealed innovative design features that resulted in unusual or unexpected aerodynamic characteristics. In some cases these characteristics have been such that the measured performance of the missile exceeds what might have been predicted. In other cases some unusual design features have been found that would alleviate what might otherwise have been a serious aerodynamic problem. In some designs, what has appeared to be a lack of refinement has proven to be a matter of expediency. It is a purpose of this paper to describe some examples of unusual design features of some Soviet missiles and to illustrate the effectiveness of the design features on the aerodynamic behavior of the missile. The paper draws on the experience of the author who for over 60 years was involved in the aerodynamic wind tunnel testing of aircraft and missiles with the NACA/NASA

    Innovative Concept for a Heavy-Load Aircraft Utilizing a Two-Dimensional Wing

    Get PDF
    Heavy-load aircraft of conventional wing-body-tail design have become very large. Excessive size of such aircraft may present problems in the manufacturing process. In addition, large wing spans may cause some difficulties in ground handling. Increasing lift loads on large span cantilever wings will also increase the strength of the wing tip vortex. The concept presented herein proposes a means for substantially increasing the lift load capability of an aircraft without increasing the overall length and span of the configuration. The concept has a rectangular wing with a relatively low span and a large chord to provide the area required for high lift. Large fuselages are attached at each wing tip to provide the volume required for heavy loading. The fuselages serve as endplates for the wing and should preclude tip flow so that two-dimensional flow might be established on the wing. Elimination of the wing tip flow should prevent the formation of a tip vortex and eliminate the tip vortex hazard to trailing aircraft. Exploratory wind tunnel tests of such an aircraft concept have been conducted. Lessons learned from these tests are discussed herein in an effort to determine the validity of the concept

    A review of 50 years of aerodynamic research with NACA/NASA

    Get PDF
    Continuous improvements in flight systems have occurred over the past 50 years due, in part, to continuous improvements in aerodynamic research techniques and capabilities. This paper traces that research from the first-hand perspective of the author who, beginning in 1944, has taken part in the NACA/NASA aerodynamic research effort through studies in low-speed wind tunnels, high-speed subsonic tunnels, transonic tunnels, supersonic tunnels, and hypersonic tunnels. New problems were found as systems advanced from low-speed propeller-driven designs to more sophisticated high-speed jet- and rocket-propelled designs. The paper reviews some of these problems and reflects on some of the solutions that have been developed in the course of various aerodynamic research programs in the past. Some of the factors, both technical and nontechnical, that have influenced the aerodynamic design, research, and development of various flight systems will be mentioned
    corecore