172 research outputs found

    Design and Modelling of a Microfluidic Electro-Lysis Device with Controlling Plates

    Get PDF
    Many Lab-on-Chip applications require sample pre-treatment systems. Using electric fields to perform cell-lysis in bio-MEMS systems has provided a powerful tool which can be integrated into Lab-on-a-Chip platforms. The major design considerations for electro-lysis devices include optimal geometry and placement of micro-electrodes, cell concentration, flow rates, optimal electric field (e.g. pulsed DC vs. AC), etc. To avoid electrolysis of the flowing solution at the exposed electrode surfaces, magnitudes and the applied voltages and duration of the DC pulse, or the AC frequency of the AC, have to be optimized for a given configuration. Using simulation tools for calculation of electric fields has proved very useful, for exploring alternative configurations and operating conditions for achieving electro cell-lysis. To alleviate the problem associated with low electric fields within the microfluidics channel and the high voltage demand on the contact electrode strips, two "control plates" are added to the microfluidics configuration. The principle of placing the two controlling plate-electrodes is based on the electric fields generated by a combined insulator/dielectric (gladwater) media. Surface charges are established at the insulator/dielectric interface. This paper discusses the effects of this interface charge on the modification of the electric field of the flowing liquid/cell solution

    Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    Get PDF
    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself

    Bursts in a fiber bundle model with continuous damage

    Full text link
    We study the constitutive behaviour, the damage process, and the properties of bursts in the continuous damage fiber bundle model introduced recently. Depending on its two parameters, the model provides various types of constitutive behaviours including also macroscopic plasticity. Analytic results are obtained to characterize the damage process along the plastic plateau under strain controlled loading, furthermore, for stress controlled experiments we develop a simulation technique and explore numerically the distribution of bursts of fiber breaks assuming infinite range of interaction. Simulations revealed that under certain conditions power law distribution of bursts arises with an exponent significantly different from the mean field exponent 5/2. A phase diagram of the model characterizing the possible burst distributions is constructed.Comment: 9 pages, 11 figures, APS style, submitted for publicatio

    Detailed experimental validation and benchmarking of six models for longitudinal tensile failure of unidirectional composites

    Get PDF
    Longitudinal tensile failure of unidirectional fibre-reinforced composites remains difficult to predict accurately. The key underlying mechanism is the tensile failure of individual fibres. This paper objectively measured the relevant input data and performed a detailed experimental validation of blind predictions of six state-of-the-art models using high-resolution in-situ synchrotron radiation computed tomography (SRCT) measurements on two carbon fibre/epoxy composites. Models without major conservative assumptions regarding stress redistributions around fibre breaks significantly overpredicted failure strains and strengths, but predictions of models with at least one such assumption were in better agreement for those properties. Moreover, all models failed to predict fibre break (and cluster) development accurately, suggesting that it is vital to improve experimental methods to characterise accurately the in-situ strength distribution of fibres within the composites. As a result of detailed measurements of all required input parameters and advanced SRCT experiments, this paper establishes a benchmark for future research on longitudinal tensile failure
    corecore