18 research outputs found

    The first sample of spectroscopically confirmed ultra-compact massive galaxies in the Kilo Degree Survey

    Get PDF
    We present results from an ongoing investigation using the Kilo Degree Survey (KiDS) on the VLT Survey Telescope (VST) to provide a census of ultra-compact massive galaxies (UCMGs), defined as galaxies with stellar masses M* > 8 × 1010M⊙ and effective radii Re < 1.5 kpc. UCMGs, which are expected to have undergone very few merger events, provide a unique view on the accretion history of the most massive galaxies in the Universe. Over an effective sky area of nearly 330 deg2, we select UCMG candidates from KiDS multicolour images, which provide high quality structural parameters, photometric redshifts, and stellar masses. Our sample of ~1000 photometrically selected UCMGs at z < 0.5 represents the largest sample of UCMG candidates assembled to date over the largest sky area. In this paper, we present the first effort to obtain their redshifts using different facilities, starting with first results for 28 candidates with redshifts z < 0.5, obtained at NTT and TNG telescopes.We confirmed, as bona fide UCMGs, 19 out of the 28 candidates with new redshifts. A further 46 UCMG candidates are confirmed with literature spectroscopic redshifts (35 at z < 0.5), bringing the final cumulative sample of spectroscopically confirmed lower-z UCMGs to 54 galaxies, which is the largest sample at redshifts below 0.5. We use these spectroscopic redshifts to quantify systematic errors in our photometric selection, and use these to correct our UCMG number counts. We finally compare the results to independent data sets and simulations

    Unveiling the Nature of Giant Ellipticals and their Stellar Halos with the VST

    Get PDF
    Observations of diffuse starlight in the outskirts of galaxies provide fundamental constraints on the cosmological context of galaxy assembly in the Lambda Cold Dark Matter model, which predicts that galaxies grow through a combination of in-situ star formation and accretion of stars from other galaxies. Accreted stars are expected to dominate in the outer parts of galaxies. Since dynamical timescales are longer in these regions, substructures related to accretion, such as streams and shells, can persist over many Gyr. In this work we use extremely deep g- and i-band images of six massive early- type galaxies (ETGs) from the VEGAS survey to constrain the properties of their accreted stellar components. The wide field of view of OmegaCAM on the VLT Survey Telescope (VST) also allows us to investigate the properties of small stellar systems (such as globular clusters, ultra-compact dwarfs and satellite galaxies) in the halos of our galaxies. By fitting light profiles, and comparing the results to simulations of elliptical galaxy assembly, we have identified signatures of a transition between relaxed and unrelaxed accreted components and can constrain the balance between in-situ and accreted stars

    The SAMI-Fornax Dwarfs Survey I: sample, observations, and the specific stellar angular momentum of dwarf elliptical galaxies

    Get PDF
    Dwarf ellipticals are the most common galaxy type in cluster environments, however the challenges associated with their observation mean their formation mechanisms are still poorly understood. To address this, we present deep integral field observations of a sample of 31 low-mass (107.5<10^{7.5} < M<109.5_\star < 10^{9.5} M_\odot) early-type galaxies in the Fornax cluster with the SAMI instrument. For 21 galaxies our observations are sufficiently deep to construct spatially resolved maps of the stellar velocity and velocity dispersion - for the remaining galaxies we extract global velocities and dispersions from aperture spectra only. From the kinematic maps we measure the specific stellar angular momentum λR\lambda_R of the lowest mass dE galaxies to date. Combining our observations with early-type galaxy data from the literature spanning a large range in stellar mass, we find that λR\lambda_R decreases towards lower stellar mass, with a corresponding increase in the proportion of slowly rotating galaxies in this regime. The decrease of λR\lambda_R with mass in our sample dE galaxies is consistent with a similar trend seen in somewhat more massive spiral galaxies from the CALIFA survey. This suggests that the degree of dynamical heating required to produce dEs from low-mass starforming progenitors may be relatively modest, and consistent with a broad range of formation mechanisms.Comment: 13 pages, 10 figures and an additional 10 pages of appendices. Accepted for publication in MNRA

    VizieR Online Data Catalog: VEGAS: A VST Early-type GAlaxy Survey (Capaccioli+, 2015)

    Get PDF
    The VST Elliptical GAlaxies Survey (VEGAS) is a deep multiband (g,r,i) imaging survey of early-type galaxies in the southern hemisphere carried out with VST at the ESO Cerro Paranal Observatory (Chile). The large field of view (FOV) of the OmegaCAM mounted on VST (one square degree matched by pixels 0.21-arcsec wide), together with its high efficiency and spatial resolution (typically better than 1-arcsec; Kuijken, 2011Msngr.146....8K) allows us to map with a reasonable integration time the surface brightness of a galaxy out to isophotes encircling about 95% of the total light. Observations started in October 2011 (ESO Period 88), and since then, the survey has acquired exposures for about 20 bright galaxies (and for a wealth of companion objects in the field), for a totality of ~80h (up to Period 93). (1 data file). <P /

    YMCA-1: A New Remote Star Cluster of the Milky Way?

    Get PDF
    We report the possible discovery of a new stellar system (YMCA-1), identified during a search for small scale overdensities in the photometric data of the YMCA survey. The object's projected position lies on the periphery of the Large Magellanic Cloud about 13° apart from its center. The most likely interpretation of its color-magnitude diagram, as well as of its integrated properties, is that YMCA-1 may be an old and remote star cluster of the Milky Way at a distance of 100 kpc from the Galactic center. If this scenario could be confirmed, then the cluster would be significantly fainter and more compact than most of the known star clusters residing in the extreme outskirts of the Galactic halo, but quite similar to Laevens 3. However, much deeper photometry is needed to firmly establish the actual nature of the cluster, and the distance to the system. * This work is based on INAF-VST guaranteed observing time under ESO program: 0104.D-0427(A)

    VizieR Online Data Catalog: VEGAS-SSS photometry of NGC3115 (Cantiello+, 2015)

    Get PDF
    We present g and i band photometry for ~47000 extended and point-like objects in the ~0.8 square degree area centred on NGC3115. For ~30000 object in the catalogue, structural parameters are also available. For each object equatorial coordinates, galactocentric distance from the photometric center of NGC3115, magnitudes in g and i bands (SDSS calibrated), colour, local extinction and sctructural parameters. (1 data file). <P /

    Galaxy populations in the Hydra i cluster from the VEGAS survey:I. Optical properties of a large sample of dwarf galaxies

    Get PDF
    At ~50 Mpc, the Hydra I cluster of galaxies is among the closest cluster in the z=0 Universe, and an ideal environment to study dwarf galaxy properties in a cluster environment. We exploit deep imaging data of the Hydra I cluster to construct a new photometric catalog of dwarf galaxies in the cluster core, which is then used to derive properties of the Hydra I cluster dwarf galaxies population as well as to compare with other clusters. Moreover, we investigate the dependency of dwarf galaxy properties on their surrounding environment. The new Hydra I dwarf catalog contains 317 galaxies with luminosity between -18.5<MrM_r<-11.5 mag, a semi-major axis larger than ~200 pc (a=0.84 arcsec), of which 202 are new detections, previously unknown dwarf galaxies in the Hydra I central region. We estimate that our detection efficiency reaches 50% at the limiting magnitude MrM_r=-11.5 mag, and at the mean effective surface brightness μe,r\overline{\mu}_{e,r}=26.5 mag/arcsec2arcsec^2. We present the standard scaling relations for dwarf galaxies and compare them with other nearby clusters. We find that there are no observational differences for dwarfs scaling relations in clusters of different sizes. We study the spatial distribution of galaxies, finding evidence for the presence of substructures within half the virial radius. We also find that mid- and high-luminosity dwarfs (MrM_r<-14.5 mag) become on average redder toward the cluster center, and that they have a mild increase in ReR_e with increasing clustercentric distance, similar to what is observed for the Fornax cluster. No clear clustercentric trends are reported with surface brightness and S\'ersic index. Considering galaxies in the same magnitude-bins, we find that for high and mid-luminosity dwarfs (MrM_r<-13.5 mag) the g-r color is redder for the brighter surface brightness and higher S\'ersic n index objects.Comment: Accepted for publication in A&A. 25 pages, 21 figure

    Looking into the faintEst WIth MUSE (LEWIS): on the nature of ultra-diffuse galaxies in the Hydra-I cluster.I. Project description and preliminary results

    Get PDF
    Looking into the faintEst WIth MUSE (LEWIS) is an ESO large observing programme aimed at obtaining the first homogeneous integral-field spectroscopic survey of 30 extremely low-surface brightness (LSB) galaxies in the Hydra I cluster of galaxies, with MUSE at ESO-VLT. The majority of LSB galaxies in the sample (22 in total) are ultra-diffuse galaxies (UDGs). The distribution of systemic velocities Vsys ranges between 2317 km/s and 5198 km/s and is centred on the mean velocity of Hydra I (Vsys = 3683 ±\pm 46 km/s). Considering the mean velocity and the velocity dispersion of the cluster, 17 out of 20 targets are confirmed cluster members. To assess the quality of the data and demonstrate the feasibility of the science goals, we report the preliminary results obtained for one of the sample galaxies, UDG11. For this target, we derived the stellar kinematics, including the 2-dimensional maps of line-of-sight velocity and velocity dispersion, constrained age and metallicity, and studied the globular cluster (GC) population hosted by the UDG. Results are compared with the available measurements for UDGs and dwarf galaxies in literature. By fitting the stacked spectrum inside one effective radius, we find that UDG11 has a velocity dispersion σ=20±8\sigma = 20 \pm 8 km/s, it is old (10±110\pm1 Gyr), metal-poor ([M/H]=-1.17±\pm0.11 dex) and has a total dynamical mass-to-light ratio M/LV14/L_V\sim 14, comparable to those observed for classical dwarf galaxies. The spatially resolved stellar kinematics maps suggest that UDG11 does not show a significant velocity gradient along either major or minor photometric axes. We find two GCs kinematically associated with UDG11. The estimated total number of GCs in UDG11, corrected for the spectroscopic completeness limit, is NGC=5.91.8+2.2N_{GC}= 5.9^{+2.2}_ {-1.8}, which corresponds to a GC specific frequency of SN=8.42.7+3.2S_N = 8.4^{+3.2}_{-2.7}.Comment: Accepted for publication in Astronomy and Astrophysic

    VizieR Online Data Catalog: The Fornax Deep Survey with the VST. IX. (Cantiello+, 2020)

    Get PDF
    We derive ugri photometry of ~1.7 million sources over the ~21 square degree area of the Fornax Deep Survey (FDS) centered on the bright galaxy NGC1399 (fds.dat). For a wider area, of ~27 square degrees extending in the direction of NGC1316, we provide gri photometry for ~3.1 million sources (fdsex.dat). The identification of compact sources, globular clusters (GC) and ultra compact dwarf galaxies (UCD), is obtained from a combination of photometric and morphometric selection criteria taking as reference the properties of confirmed GCs and UCDs in the literature. The master tables of GC and UCD are also provided. (4 data files)

    VizieR Online Data Catalog: Fornax Deep Survey with VST. IV. dwarf galaxies (Venhola+, 2018)

    Get PDF
    The Fornax Deep Survey is a collaboration of the two guaranteed observing time surveys Focus (PI: R. Peletier) and VEGAS (PI: E. Iodice, see also Capaccioli et al. 2015, Cat. J/A+A/581/A10) that covers the area of the Fornax cluster and Fornax A subgroup with deep multiband imaging The observations of the FDS were performed between November 2013 and November 2017. (2 data files)
    corecore