93 research outputs found
Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl
Antiapoptotic B-cell lymphoma 2 (Bcl-2) targets the inositol 1,4,5-trisphosphate receptor (IP3R) via its BH4 domain, thereby suppressing IP3R Ca2+-flux properties and protecting against Ca2+-dependent apoptosis. Here, we directly compared IP3R inhibition by BH4-Bcl-2 and BH4-Bcl-Xl. In contrast to BH4-Bcl-2, BH4-Bcl-Xl neither bound the modulatory domain of IP3R nor inhibited IP3-induced Ca2+ release (IICR) in permeabilized and intact cells. We identified a critical residue in BH4-Bcl-2 (Lys17) not conserved in BH4-Bcl-Xl (Asp11). Changing Lys17 into Asp in BH4-Bcl-2 completely abolished its IP3R-binding and -inhibitory properties, whereas changing Asp11 into Lys in BH4-Bcl-Xl induced IP3R binding and inhibition. This difference in IP3R regulation between BH4-Bcl-2 and BH4-Bcl-Xl controls their antiapoptotic action. Although both BH4-Bcl-2 and BH4-Bcl-Xl had antiapoptotic activity, BH4-Bcl-2 was more potent than BH4-Bcl-Xl. The effect of BH4-Bcl-2, but not of BH4-Bcl-Xl, depended on its binding to IP(3)Rs. In agreement with the IP3R-binding properties, the antiapoptotic activity of BH4-Bcl-2 and BH4-Bcl-Xl was modulated by the Lys/Asp substitutions. Changing Lys17 into Asp in full-length Bcl-2 significantly decreased its binding to the IP3R, its ability to inhibit IICR and its protection against apoptotic stimuli. A single amino-acid difference between BH4-Bcl-2 and BH4-Bcl-Xl therefore underlies differential regulation of IP(3)Rs and Ca2+-driven apoptosis by these functional domains. Mutating this residue affects the function of Bcl-2 in Ca2+ signaling and apoptosis
Receptor Activation and Inositol Lipid Hydrolysis in Neural Tissues
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66228/1/j.1471-4159.1987.tb05618.x.pd
Expression and Function of Osteopontin in Vascular Adventitial Fibroblasts and Pathological Vascular Remodeling
Osteopontin is known to play important roles in various diseases including vascular disorders. However, little is known about its expression and function in vascular adventitial fibroblasts. Adventitial fibroblasts have been shown to play a key role in pathological vascular remodeling associating with various vascular disorders. In this study, we measured activation of Osteopontin and its biological functions in cultured adventitial fibroblasts and injured rat carotid injury arteries induced by balloon angioplasty. Our results showed that angiotensin II and aldosterone increased Osteopontin expression in adventitial fibroblasts in a time- and concentration-dependent manner. MAPKs and AP-1 pathways were involved in Osteopontin upregulation. In addition, Adventitial fibroblast migration stimulated by Angiotensin II and aldosterone required OPN expression. Perivascular delivery of antisense oligonucleotide for Osteopontin suppressed neointimal formation post-injury. We concluded that upregulation of Osteopontin expression in adventitial fibroblasts might be important in the pathogenesis of vascular remodeling after arterial injury
Renoprotective RAAS inhibition does not affect the association between worse renal function and higher plasma aldosterone levels
Abstract Background Aldosterone is elevated in chronic kidney disease (CKD) and may be involved in hypertension. Surprisingly, the determinants of the plasma aldosterone concentration (PAC) and its role in hypertension are not well studied in CKD. Therefore, we studied the determinants of aldosterone and its association with blood pressure in CKD patients. We also studied this during renin-angiotensin-aldosterone system inhibition (RAASi) to establish clinical relevance, as RAASi is the treatment of choice in CKD with albuminuria. Methods We performed a post-hoc analysis on data from a randomized controlled double blind cross-over trial in non-diabetic CKD patients (n = 33, creatinine clearance (CrCl) 85 (75–95) ml/min, proteinuria 3.2 (2.5–4.0) g/day). Patients were treated with losartan 100 mg (ARB), and ARB + hydrochlorothiazide 25 mg (HCT), during both a regular (200 ± 10 mmol Na+/day) and low (89 ± 8 mmol Na+/day) dietary sodium intake, in 6-week study periods. PAC data at the end of each study period were analyzed. The association between PAC and blood pressure was analyzed continuously, and according to PAC above or below the median. Results Lower CrCl was correlated with higher PAC during placebo as well as during ARB (β = −1.213, P = 0.008 and β = −1.090, P = 0.010). Higher PAC was not explained by high renin, illustrated by a comparable association between CrCl and the aldosterone-to-renin ratio. The association between lower CrCl and higher PAC was also found in a second study with single RAASi with ACE inhibition (ACEi; lisinopril 40 mg/day), and dual RAASi (lisinopril 40 mg/day + valsartan 320 mg/day). Higher PAC was associated with a higher systolic blood pressure (P = 0.010) during different study periods. Only during maximal treatment with ARB + HCT + dietary sodium restriction, blood pressure was no longer different in subjects with a PAC above and below the median. Conclusions In CKD patients with a standardized regular sodium intake, worse renal function is associated with a higher aldosterone, untreated and during RAASi with either ARB, ACEi, or both. Furthermore, higher aldosterone is associated with higher blood pressure, which can be treated with the combination of RAASi, HCT and dietary sodium restriction. The first study was performed before it was standard to register trials and the study was not retrospectively registered. The second study was registered in the Netherlands Trial Register on the 5th of May 2006 (NTR675)
The effect of heparin on the inositol 1,4,5-trisphosphate receptor in rat liver microsomes: dependence on sulphate content and chain length
Heparin is known to inhibit the binding of inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) to high-affinity binding sites and to inhibit Ins 1,4,5-P3-induced Ca2+ release from intracellular membrane-bound stores [(1987) J. Biol. Chem. 262, 12132-12136; (1987) FEBS Lett. 228, 57-59]. We have performed studies to clarify the structural requirements for this action of heparin in rat liver microsomes. Both N- and O-linked sulphate groups contribute to binding activity, since de-N-sulphated heparin was without effect on the Ins 1,4,5-P3 receptor whereas a polyxylan bearing only O-linked sulphates (pentosan polysulphate) was as active as heparin. Therefore, the density of negative charge contributed by sulphate groups is important for the binding of heparin. Heparins with high and low affinity for antithrombin III both inhibited Ins 1,4,5-P3 binding. There was a strong dependence on chain length, since binding activity decreased dramatically as the size of the heparin chain was reduced below that of 18-24 monosaccharide units
Inositol 1,4,5-trisphosphate binding sites copurify with the putative Ca-storage protein calreticulin in rat liver
Rat liver was homogenized and subjected to differential centrifugation. When the low speed nuclear pellet was processed on a Percoll gradient, plasma membrane markers and Ins(1,4,5)P3 binding activity purified together. The high speed (microsomal) fraction was subfractionated by sucrose density gradient centrifugation, resulting in 10-fold enrichment of [32P]-Ins(1,4,5)P3 binding. In the sucrose density gradient fractions there was an inverse relationship between the enrichment of plasma membrane markers and Ins(1,4,5)P3 binding sites. Endoplasmic reticulum markers showed a moderate enrichment in the fractions displaying high Ins(1,4,5)P3 binding activity. Calcium binding proteins in the homogenate and in the microsomal subfractions were separated by SDS/PAGE. A 60 kD protein, stained metachromatically with Stains-All was identified as calreticulin with immunoblotting. Its enrichment pattern was similar to that of Ins(1,4,5)P3 binding sites, indicating the co-existence of these two elements of Ca(2+)-metabolism in the same intracellular compartment in the liver
- …