65 research outputs found

    Customer emotions in service failure and recovery encounters

    Get PDF
    Emotions play a significant role in the workplace, and considerable attention has been given to the study of employee emotions. Customers also play a central function in organizations, but much less is known about customer emotions. This chapter reviews the growing literature on customer emotions in employee–customer interfaces with a focus on service failure and recovery encounters, where emotions are heightened. It highlights emerging themes and key findings, addresses the measurement, modeling, and management of customer emotions, and identifies future research streams. Attention is given to emotional contagion, relationships between affective and cognitive processes, customer anger, customer rage, and individual differences

    Late Pleistocene tephrochronology of marine sediments adjacent to Montserrat, Lesser Antilles volcanic arc

    No full text
    The recent history of the Soufrière Hills volcano, Montserrat, Lesser Antilles volcanic arc, is deduced using data obtained from a submarine core collected in 2002. The core contains concentrations of ash and several tephra layers, which are identified by the abundance of glass shards, dense and poorly vesiculated particles, and scoria. The tephra layers have been dated using micropalaeontology and stable isotope stratigraphy. Tephra layers in a marine sediment core off the coast of Montserrat record the volcanic history of South Soufrière Hills–Soufrière Hills volcano back to 250 ka. Eight layers are composed of dense juvenile ash related to dome eruptions, five of which can be directly correlated to dated domes or related pyroclastic flow sequences on land. Six layers are composed of pumiceous glassy ash and relate to significant explosive eruptions. A marker sequence of basalt tephra layers is dated at 124–147 ka and is correlated with construction of the South Soufrière Hills basaltic stratocone. Pelagic sediments between the main tephra layers have low abundances of volcanogenic components (<15%) and suggest long periods (c. 104 years) of dormancy or low activity

    Climate warning results in phenotypic and evolutionary changes in spring events: a mini review

    No full text
    The impact of climate change, in particular increasing spring temperatures, on life-cycle events of plants and animals has gained scientific attention in recent years. Leafing of trees, appearance and abundance of insects, and migration of birds, across a range of species and countries, have been cited as phenotrends that are advancing in response to warmer spring temperatures. The ability of organisms to acclimate to variations in environmental conditions is known as phenotypic plasticity. Plasticity allows organisms to time developmental stages to coincide with optimum availability of environmental resources. There may, however, come a time when the limit of this plasticity is reached and the species needs to adapt genetically to survive. Here we discuss evidence of the impact of climate warming on plant, insect and bird phenology through examination of: (1) phenotypic plasticity in (a) bud burst in trees, (b) appearance of insects and (c) migration of birds; and (2) genetic adaptation in (a) gene expression during bud burst in trees, (b) the timing of occurrence of phenological events in insects and (c) arrival and breeding times of migratory birds. Finally, we summarise the potential consequences of future climatic changes for plant, insect and bird phenolog
    corecore