96 research outputs found

    Spectral properties of non-conservative multichannel SUSY partners of the zero potential

    Full text link
    Spectral properties of a coupled N×NN \times N potential model obtained with the help of a single non-conservative supersymmetric (SUSY) transformation starting from a system of NN radial Schr\"odinger equations with the zero potential and finite threshold differences between the channels are studied. The structure of the system of polynomial equations which determine the zeros of the Jost-matrix determinant is analyzed. In particular, we show that the Jost-matrix determinant has N2N−1N2^{N-1} zeros which may all correspond to virtual states. The number of bound states satisfies 0≤nb≤N0\leq n_b\leq N. The maximal number of resonances is nr=(N−1)2N−2n_r=(N-1)2^{N-2}. A perturbation technique for a small coupling approximation is developed. A detailed study of the inverse spectral problem is given for the 2×22\times 2 case.Comment: 17 pages, 4 figure

    Darboux transformations for quasi-exactly solvable Hamiltonians

    Full text link
    We construct new quasi-exactly solvable one-dimensional potentials through Darboux transformations. Three directions are investigated: Reducible and two types of irreducible second-order transformations. The irreducible transformations of the first type give singular intermediate potentials and the ones of the second type give complex-valued intermediate potentials while final potentials are meaningful in all cases. These developments are illustrated on the so-called radial sextic oscillator.Comment: 11 pages, Late

    Eigenphase preserving two-channel SUSY transformations

    Full text link
    We propose a new kind of supersymmetric (SUSY) transformation in the case of the two-channel scattering problem with equal thresholds, for partial waves of the same parity. This two-fold transformation is based on two imaginary factorization energies with opposite signs and with mutually conjugated factorization solutions. We call it an eigenphase preserving SUSY transformation as it relates two Hamiltonians, the scattering matrices of which have identical eigenphase shifts. In contrast to known phase-equivalent transformations, the mixing parameter is modified by the eigenphase preserving transformation.Comment: 16 pages, 1 figur

    Influence of low energy scattering on loosely bound states

    Full text link
    Compact algebraic equations are derived, which connect the binding energy and the asymptotic normalization constant (ANC) of a subthreshold bound state with the effective-range expansion of the corresponding partial wave. These relations are established for positively-charged and neutral particles, using the analytic continuation of the scattering (S) matrix in the complex wave-number plane. Their accuracy is checked on simple local potential models for the 16O+n, 16O+p and 12C+alpha nuclear systems, with exotic nuclei and nuclear astrophysics applications in mind

    Many-body approach to proton emission and the role of spectroscopic factors

    Get PDF
    The process of proton emission from nuclei is studied by utilizing the two-potential approach of Gurvitz and Kalbermann in the context of the full many-body problem. A time-dependent approach is used for calculating the decay width. Starting from an initial many-body quasi-stationary state, we employ the Feshbach projection operator approach and reduce the formalism to an effective one-body problem. We show that the decay width can be expressed in terms of a one-body matrix element multiplied by a normalization factor. We demonstrate that the traditional interpretation of this normalization as the square root of a spectroscopic factor is only valid for one particular choice of projection operator. This causes no problem for the calculation of the decay width in a consistent microscopic approach, but it leads to ambiguities in the interpretation of experimental results. In particular, spectroscopic factors extracted from a comparison of the measured decay width with a calculated single-particle width may be affected.Comment: 17 pages, Revte

    Multi-channel phase-equivalent transformation and supersymmetry

    Get PDF
    Phase-equivalent transformation of local interaction is generalized to the multi-channel case. Generally, the transformation does not change the number of the bound states in the system and their energies. However, with a special choice of the parameters, the transformation removes one of the bound states and is equivalent to the multi-channel supersymmetry transformation recently suggested by Sparenberg and Baye. Using the transformation, it is also possible to add a bound state to the discrete spectrum of the system at a given energy E<0E<0 if the angular momentum at least in one of the coupled channels l≥2l\ge 2.Comment: 9 pages, revtex; to be published in Phys. At. Nucl. (Oct. 2000

    Coherent Backscattering of light in a magnetic field

    Full text link
    This paper describes how coherent backscattering is altered by an external magnetic field. In the theory presented, magneto-optical effects occur inside Mie scatterers embedded in a non-magnetic medium. Unlike previous theories based on point-like scatterers, the decrease of coherent backscattering is obtained in leading order of the magnetic field using rigorous Mie theory. This decrease is strongly enhanced in the proximity of resonances, which cause the path length of the wave inside a scatterer to be increased. Also presented is a novel analysis of the shape of the backscattering cone in a magnetic field.Comment: 27 pages, 5 figures, Revtex, to appear in Phys. Rev.

    Multi-Channel Inverse Scattering Problem on the Line: Thresholds and Bound States

    Get PDF
    We consider the multi-channel inverse scattering problem in one-dimension in the presence of thresholds and bound states for a potential of finite support. Utilizing the Levin representation, we derive the general Marchenko integral equation for N-coupled channels and show that, unlike to the case of the radial inverse scattering problem, the information on the bound state energies and asymptotic normalization constants can be inferred from the reflection coefficient matrix alone. Thus, given this matrix, the Marchenko inverse scattering procedure can provide us with a unique multi-channel potential. The relationship to supersymmetric partner potentials as well as possible applications are discussed. The integral equation has been implemented numerically and applied to several schematic examples showing the characteristic features of multi-channel systems. A possible application of the formalism to technological problems is briefly discussed.Comment: 19 pages, 5 figure

    Single- and coupled-channel radial inverse scattering with supersymmetric transformations

    Full text link
    The present status of the coupled-channel inverse-scattering method with supersymmetric transformations is reviewed. We first revisit in a pedagogical way the single-channel case, where the supersymmetric approach is shown to provide a complete solution to the inverse-scattering problem. A special emphasis is put on the differences between conservative and non-conservative transformations. In particular, we show that for the zero initial potential, a non-conservative transformation is always equivalent to a pair of conservative transformations. These single-channel results are illustrated on the inversion of the neutron-proton triplet eigenphase shifts for the S and D waves. We then summarize and extend our previous works on the coupled-channel case and stress remaining difficulties and open questions. We mostly concentrate on two-channel examples to illustrate general principles while keeping mathematics as simple as possible. In particular, we discuss the difference between the equal-threshold and different-threshold problems. For equal thresholds, conservative transformations can provide non-diagonal Jost and scattering matrices. Iterations of such transformations are shown to lead to practical algorithms for inversion. A convenient technique where the mixing parameter is fitted independently of the eigenphases is developed with iterations of pairs of conjugate transformations and applied to the neutron-proton triplet S-D scattering matrix, for which exactly-solvable matrix potential models are constructed. For different thresholds, conservative transformations do not seem to be able to provide a non-trivial coupling between channels. In contrast, a single non-conservative transformation can generate coupled-channel potentials starting from the zero potential and is a promising first step towards a full solution to the coupled-channel inverse problem with threshold differences.Comment: Topical review, 84 pages, 7 figures, 93 reference
    • …
    corecore