193 research outputs found

    Sculpture with reflective surfaces

    Get PDF
    Not Include

    Onsager reciprocity in premelting solids

    Get PDF
    The diffusive motion of foreign particles dispersed in a premelting solid is analyzed within the framework of irreversible thermodynamics. We determine the mass diffusion coefficient, thermal diffusion coefficient and Soret coefficient of the particles in the dilute limit, and find good agreement with experimental data. In contrast to liquid suspensions, the unique nature of premelting solids allows us to derive an expression for the Dufour coefficient and independently verify the Onsager reciprocal relation coupling diffusion to the flow of heat

    Quality of care for NSAID users: development of an assessment tool

    Get PDF
    Objective. Assessments of NSAID use based on authoritative guidelines typically overlook patients’ views and nuances of \ud medical history. Our objective was to develop an assessment tool that incorporates these aspects, and technical items, for quality of care assessments in NSAID users. \ud \ud Methods. Patients newly referred to a university hospital were interviewed by a nurse using an agreed template. A multidisciplinary group of rheumatologists, nurse specialists, primary care physicians and a pharmacist reviewed current guidance and systematic reviews on NSAID use, and a series of interview transcripts. The group agreed, by informal consensus, important determinants of effective and safe NSAID use. Technical aspects of medical care and items that reflected interpersonal care were included in an index for assessing quality of care for individual patients. Interview transcripts of 100 patients were scored by panel members and reliability of scores was tested by calculating weighted percentage agreement and the kappa statistic. \ud \ud Results. Our final index had five domains: medical risk factors; steps taken to reduce risk; knowledge of adverse effects; NSAID dose; and cost efficiency. Each item was scored 0, 1 or 2. Scores were summed, giving a maximum of 10 (low scores indicating low quality). Intra-rater agreement was >90%; kappa was 0.47–0.87 for individual domains and 0.59 for overall score. Inter-rater agreement for overall score was 95%; kappa was 0.25–0.78 for domains and 0.48 for overall score. Patients with especially low scores were identified using the mode of scores for five assessors; obvious clinical concerns were identified, supporting index face validity. \ud \ud Conclusions. A simple index to evaluate quality of care for NSAID users based on a patient interview is described. This may be used by one or more assessors to examine care standards and highlight deficiencies in relation to NSAID use in practice

    Dynamics of colloidal particles in ice

    Get PDF
    We use X-ray Photon Correlation Spectroscopy (XPCS) to probe the dynamics of colloidal particles in polycrystalline ice. During freezing, the dendritic ice morphology and rejection of particles from the ice created regions of high-particle-density, where some of the colloids were forced into contact and formed disordered aggregates. We find that the particles in these high density regions underwent ballistic motion coupled with both stretched and compressed exponential decays of the intensity autocorrelation function, and that the particles’ characteristic velocity increased with temperature. We explain this behavior in terms of ice grain boundary migration

    The Ursinus Weekly, March 27, 1916

    Get PDF
    Basketball season very successful • Marion Ballou Fisk delights audience • New Weekly staff • Schaff prize essay: The toll of the European war • Literary societies • Glee Club concert Tuesday • YMCA officershttps://digitalcommons.ursinus.edu/weekly/2623/thumbnail.jp

    The Ursinus Weekly, April 3, 1916

    Get PDF
    Male Glee Club in home concert • 46th anniversary of Zwing Society • Varsity nine wins in opening game • Schaff prize essay: The toll of the European war • Christian organizations • Resolutions • College directoryhttps://digitalcommons.ursinus.edu/weekly/2624/thumbnail.jp

    Accretion in Protoplanetary Disks by Collisional Fusion

    Full text link
    The formation of a solar system is believed to have followed a multi-stage process around a protostar. Whipple first noted that planetesimal growth by particle agglomeration is strongly influenced by gas drag; there is a "bottleneck" at the meter scale with such bodies rapidly spiraling into the central star, whereas much smaller or larger particles do not. Thus, successful planetary accretion requires rapid planetesimal growth to km scale. A commonly accepted picture is that for collisional velocities VcV_c above a certain threshold collisional velocity, Vth{V_{th}} \sim 0.1-10 cm s1^{-1}, particle agglomeration is not possible; elastic rebound overcomes attractive surface and intermolecular forces. However, if perfect sticking is assumed for all collisions the bottleneck can be overcome by rapid planetesimal growth. While previous work has dealt explicitly with the influences of collisional pressures and the possibility of particle fracture or penetration, the basic role of the phase behavior of matter--phase diagrams, amorphs and polymorphs--has been neglected. Here it is demonstrated that novel aspects of surface phase transitions provide a physical basis for efficient sticking through collisional melting or amphorph-/polymorphization and fusion to extend the collisional velocity range of primary accretion to ΔVc\Delta V_c \sim 1-100 m s1^{-1}, which bound both turbulent RMS speeds and the velocity differences between boulder sized and small grains \sim 1-50 m s1^{-1}. Thus, as inspiraling meter sized bodies collide with smaller particles in this high velocity collisional fusion regime they grow rapidly to km scales and hence settle into stable Keplerian orbits in \sim 105^5 years before photoevaporative wind clears the disk of source material.Comment: 11 pages, 7 figures, 1 tabl

    Axisymmetric viscous gravity currents flowing over a porous medium

    Get PDF
    We study the axisymmetric propagation of a viscous gravity current over a deep porous medium into which it also drains. A model for the propagation and drainage of the current is developed and solved numerically in the case of constant input from a point source. In this case, a steady state is possible in which drainage balances the input, and we present analytical expressions for the resulting steady profile and radial extent. We demonstrate good agreement between our experiments, which use a bed of vertically aligned tubes as the porous medium, and the theoretically predicted evolution and steady state. However, analogous experiments using glass beads as the porous medium exhibit a variety of unexpected behaviours, including overshoot of the steady-state radius and subsequent retreat, thus highlighting the importance of the porous medium geometry and permeability structure in these systems.Comment: 11 pages, 6 figures, 1 tabl

    Particle-scale structure in frozen colloidal suspensions from small angle X-ray scattering

    Get PDF
    During directional solidification of the solvent in a colloidal suspension, the colloidal particles segregate from the growing solid, forming high-particle-density regions with structure on a hierarchy of length scales ranging from that of the particle-scale packing to the large-scale spacing between these regions. Previous work has mostly concentrated on the medium- to large-length scale structure, as it is the most accessible and thought to be more technologically relevant. However, the packing of the colloids at the particle-scale is an important component not only in theoretical descriptions of the segregation process, but also to the utility of freeze-cast materials for new applications. Here we present the results of experiments in which we investigated this structure across a wide range of length scales using a combination of small angle X-ray scattering and direct optical imaging. As expected, during freezing the particles were concentrated into regions between ice dendrites forming a microscopic pattern of high- and low-particle-density regions. X-ray scattering indicates that the particles in the high density regions were so closely packed as to be touching. However, the arrangement of the particles does not conform to that predicted by any standard inter-particle pair potentials, suggesting that the particle packing induced by freezing differs from that formed during equilibrium or steady-state densification processes

    The Behavior of Granular Materials under Cyclic Shear

    Full text link
    The design and development of a parallel plate shear cell for the study of large scale shear flows in granular materials is presented. The parallel plate geometry allows for shear studies without the effects of curvature found in the more common Couette experiments. A system of independently movable slats creates a well with side walls that deform in response to the motions of grains within the pack. This allows for true parallel plate shear with minimal interference from the containing geometry. The motions of the side walls also allow for a direct measurement of the velocity profile across the granular pack. Results are presented for applying this system to the study of transients in granular shear and for shear-induced crystallization. Initial shear profiles are found to vary from packing to packing, ranging from a linear profile across the entire system to an exponential decay with a width of approximately 6 bead diameters. As the system is sheared, the velocity profile becomes much sharper, resembling an exponential decay with a width of roughly 3 bead diameters. Further shearing produces velocity profiles which can no longer be fit to an exponential decay, but are better represented as a Gaussian decay or error function profile. Cyclic shear is found to produce large scale ordering of the granular pack, which has a profound impact on the shear profile. There exist periods of time in which there is slipping between layers as well as periods of time in which the layered particles lock together resulting in very little relative motion.Comment: 10 pages including 12 figure
    corecore