62 research outputs found

    Prostaglandin F2-alpha receptor (FPr) expression on porcine corpus luteum microvascular endothelial cells (pCL-MVECs)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The corpus luteum (CL) is a transient endocrine gland and prostaglandin F2-alpha is considered to be the principal luteolysin in pigs. In this species, the in vivo administration of prostaglandin F2-alpha induces apoptosis in large vessels as early as 6 hours after administration. The presence of the prostaglandin F2-alpha receptor (FPr) on the microvascular endothelial cells (pCL-MVECs) of the porcine corpus luteum has not yet been defined. The aim of the study was to assess FPr expression in pCL-MVECs in the early and mid-luteal phases (EL-p, ML-p), and during pregnancy (P-p). Moreover, the effectiveness of prostaglandin F2-alpha treatment in inducing pCL-MVEC apoptosis was tested.</p> <p>Methods</p> <p>Porcine CLs were collected in the EL and ML phases and during P-p. All CLs from each animal were minced together and the homogenates underwent enzymatic digestion. The pCL-MVECs were then positively selected by an immunomagnetic separation protocol using Dynabeads coated with anti-CD31 monoclonal antibody and seeded in flasks in the presence of EGM 2-MV (Microvascular Endothelial Cell Medium-2). After 4 days of culture, the cells underwent additional immunomagnetic selection and were seeded in flasks until the confluent stage.</p> <p>PCR Real time, western blot and immunodetection assays were utilized to assess the presence of FPr on pCL-MVEC primary cultures. Furthermore, the influence of culture time (freshly isolated, cultured overnight and at confluence) and hormonal treatment (P4 and E2) on FPr expression in pCL-MVECs was also investigated. Apoptosis was detected by TUNEL assay of pCL-MVECs exposed to prostaglandin F2-alpha.</p> <p>Results</p> <p>We obtained primary cultures of pCL-MVECs from all animals. FPr mRNA and protein levels showed the highest value (ANOVA) in CL-MVECs derived from the early-luteal phase. Moreover, freshly isolated MVECs showed a higher FPr mRNA value than those cultured overnight and confluent cells (ANOVA). prostaglandin F2-alpha treatment failed to induce an apoptotic response in all the pCL-MVEC cultures.</p> <p>Conclusion</p> <p>Our data showing the presence of FPr on MVECs and the inability of prostaglandin F2-alpha to evoke an in vitro apoptotic response suggest that other molecules or mechanisms must be considered in order to explain the in vivo direct pro-apoptotic effect of prostaglandin F2-alpha at the endothelial level.</p

    Rapid Accumulation of Polymorphonuclear Neutrophils in the Corpus luteum during Prostaglandin F2α-Induced Luteolysis in the Cow

    Get PDF
    Prostaglandin F2α (PGF2α) induces luteolysis within a few days in cows, and immune cells increase in number in the regressing corpus luteum (CL), implying that luteolysis is an inflammatory-like immune response. We investigated the rapid change in polymorphonuclear neutrophil (PMN) numbers in response to PGF2α administration as the first cells recruited to inflammatory sites, together with mRNA of interleukin-8 (IL-8: neutrophil chemoattractant) and P-selectin (leukocyte adhesion molecule) in the bovine CL. CLs were collected by ovariectomy at various times after PGF2α injection. The number of PMNs was increased at 5 min after PGF2α administration, whereas IL-8 and P-selectin mRNA increased at 30 min and 2 h, respectively. PGF2α directly stimulated P-selectin protein expression at 5–30 min in luteal endothelial cells (LECs). Moreover, PGF2α enhanced PMN adhesion to LECs, and this enhancement by PGF2α was inhibited by anti-P-selectin antibody, suggesting that P-selectin expression by PGF2α is crucial in PMN migration. In conclusion, PGF2α rapidly induces the accumulation of PMNs into the bovine CL at 5 min and enhances PMN adhesion via P-selectin expression in LECs. It is suggested that luteolytic cascade by PGF2α may involve an acute inflammatory-like response due to rapidly infiltrated PMNs

    Bridging the gap between anatomy and molecular genetics for an improved understanding of congenital heart disease

    No full text
    Birth defects are the leading cause of infant mortality and malformations in congenital heart disease (CHD) are among the most prevalent and fatal of all birth defects. Yet the molecular mechanisms leading to CHD are complex and the causes of the cardiac malformations observed in humans are still unclear. In recent years, the pivotal role of certain transcription factors in heart development has been demonstrated, and gene targeting of cardiac-specific transcription factor genes in animal models has provided valuable insights into heart anomalies. Nonetheless results in these models can be species specific, and in humans, germline mutations in transcription factor genes can only account for some cases of CHD. Furthermore, most patients do not have family history of CHD. There is, therefore, a need for a better understanding of the mechanisms in both normal cardiac development and the formation of malformations. The combining of expertise in cardiac anatomy, pathology, and molecular genetics is essential to adequately comprehend developmental abnormalities associated with CHD. To help elucidate genetic alterations in affected tissues of malformed hearts, we carried out genetic analysis of cardiac-specific transcription factor genes from the Leipzig collection of formalin-fixed malformed hearts. Working with this morphologically well-characterized archival material not only provided valuable genetic information associated with disease, but enabled us to put forward a hypothesis of somatic mutations as a novel molecular cause of CHD. Knowledge of cause and disease mechanism may allow for intervention that could modify the degree of cardiac malformations or development of new approaches for prevention of CHD

    Development and regression of non-capillary vessels in the bovine corpus luteum

    No full text
    • …
    corecore