139 research outputs found

    Sediment Melts at Sub-arc Depths: an Experimental Study

    Get PDF
    The phase and melting relations in subducted pelites have been investigated experimentally at conditions relevant for slabs at sub-arc depths (T = 600-1050°C, P = 2·5-4·5 GPa). The fluid-present experiments produced a dominant paragenesis consisting of garnet-phengite-clinopyroxene-coesite-kyanite that coexists with a fluid phase at run conditions. Garnet contains detectable amounts of Na2O (up to 0·5 wt%), P2O5 (up to 0·56 wt%), and TiO2 (up to 0·9 wt%) in all experiments. Phengite is stable up to 1000°C at 4·5 GPa and is characterized by high TiO2 contents of up to 2 wt%. The solidus has been determined at 700°C, 2·5 GPa and is situated between 700 and 750°C at 3·5 GPa. At 800°C, 4·5 GPa glass was present in the experiments, indicating that at such conditions a hydrous melt is stable. In contrast, at 700°C, 3·5 and 4·5 GPa, a solute-rich, non-quenchable aqueous fluid was present. This indicates that the solidus is steeply sloping in P-T space. Fluid-present (vapour undersaturated) partial melting of the pelites occurs according to a generalized reaction phengite + omphacite + coesite + fluid = melt + garnet. The H2O content of the produced melt decreases with increasing temperature. The K2O content of the melt is buffered by phengite and increases with increasing temperature from 2·5 to 10 wt%, whereas Na2O decreases from 7 to 2·3 wt%. Hence, the melt compositions change from trondhjemitic to granitic with increasing temperature. The K2O/H2O increases strongly as a function of temperature and nature of the fluid phase. It is 0·0004-0·002 in the aqueous fluid, and then increases gradually from about 0·1 at 750-800°C to about 1 at 1000°C in the hydrous melt. This provides evidence that hydrous melts are needed for efficient extraction of K and other large ion lithophile elements from subducted sediments. Primitive subduction-related magmas typically have K2O/H2O of ∼0·1-0·4, indicating that hydrous melts rather than aqueous fluids are responsible for large ion lithophile element transfer in subduction zones and that top-slab temperatures at sub-arc depths are likely to be 700-900°

    Internal and External Fluid Sources for Eclogite-facies Veins in the Monviso Meta-ophiolite, Western Alps: Implications for Fluid Flow in Subduction Zones

    Get PDF
    To contribute to our understanding of the mechanisms and pathways of fluid movement through deeply subducted crust, we investigate high-pressure veins cutting eclogite-facies (∼2·0 GPa and ∼600°C) metagabbros of the Monviso Ophiolite, Italian Western Alps. The veins consist mainly of omphacite with minor garnet, rutile, talc and accessory zircon. Most of the vein minerals have major and trace element compositions that are comparable with the host-rock minerals, and vein and host-rock zircons have similar Hf isotopic compositions. These observations support the conclusions of previous studies that these veins largely formed from a locally sourced hydrous fluid during prograde or peak metamorphism. However, the bulk-rock Cr and Ni contents of the veins are significantly higher than those of the surrounding host eclogites. We also document distinct Cr-rich (up to weight per cent levels) zones in omphacite, garnet and rutile in some vein samples. Vein garnet and talc also have relatively high MgO and Ni contents. X-ray maps of vein garnet and rutile grains reveal complex internal zoning features, which are largely defined by micrometre-scale variations in Cr content. Some grains have concentric and oscillatory zoning in Cr, whereas others feature a chaotic fracture-like pattern. These Cr-rich zones are associated with high concentrations of Ni, B, As, Sb, Nb, Zr and high ratios of light rare earth elements (LREE) to middle REE (MREE) compared with low-Cr vein and host-rock minerals. Petrological and mass-balance constraints verify that the Cr-rich zones in the veins were not derived from internally sourced fluids, but represent precipitates from an external fluid. The external source that is consistent with the distinctive trace element characteristics of the vein components is antigorite serpentinite, which forms the structural basement of the high-pressure metagabbros. We propose at least two separate growth mechanisms for the Monviso veins. Most vein infillings were formed during progressive prograde metamorphism from locally derived fluid. Influx of the serpentinite-derived or other external fluid was transient and episodic and was probably achieved via brittle fractures, which preferentially formed along the pre-existing vein structures. The dehydration of serpentinite at high pressures in subduction zones may provide crucial volatiles and trace elements for arc magmas. Our results indicate that the movement of these fluids through subducted oceanic crust is likely to be highly channeled and transient so the progressive development of vein systems in mafic rocks may also be crucial for forming channelways for long-distance fluid flow at depth in subduction zone

    The importance of talc and chlorite "hybrid” rocks for volatile recycling through subduction zones; evidence from the high-pressure subduction mélange of New Caledonia

    Get PDF
    The transfer of fluid and trace elements from the slab to the mantle wedge cannot be adequately explained by simple models of slab devolatilization. The eclogite-facies mélange belt of northern New Caledonia represents previously subducted oceanic crust and contains a significant proportion of talc and chlorite schists associated with serpentinite. These rocks host large quantities of H2O and CO2 and may transport volatiles to deep levels in subduction zones. The bulk-rock and stable isotope compositions of talc and chlorite schist and serpentinite indicate that the serpentinite was formed by seawater alteration of oceanic lithosphere prior to subduction, whereas the talc and chlorite schists were formed by fluid-induced metasomatism of a mélange of mafic, ultramafic and metasedimentary rocks during subduction. In subduction zones, dehydration of talc and chlorite schists should occur at sub-arc depths and at significantly higher temperatures (∼ 800°C) than other lithologies (400-650°C). Fluids released under these conditions could carry high trace-element contents and may trigger partial melting of adjacent pelitic and mafic rocks, and hence may be vital for transferring volatile and trace elements to the source regions of arc magmas. In contrast, these hybrid rocks are unlikely to undergo significant decarbonation during subduction and so may be important for recycling carbon into the deep mantl

    Metamorphic diamond from the northeastern margin of Gondwana: Paradigm shifting implications for one of Earth’s largest orogens

    Get PDF
    We describe the first occurrence of diamond-facies ultrahigh pressure metamorphism along the Gondwana-Pacific margin of the Terra Australis Orogen. Metamorphic garnet grains from Ordovician metasediments along the Clarke River Fault in northeastern Queensland contain inclusions of diamond and quartz after coesite, as well as exsolution lamellae of rutile, apatite, amphibole, and silica. These features constrain minimum pressure-temperature conditions to >3.5 gigapascals and ~860°C, although peak pressure conditions may have exceeded 5 gigapascals. On the basis of these data, we interpret the Clarke River Fault to represent a Paleozoic suture zone and at least parts of the Terra Australis Orogen to have formed through classic Wilson cycle processes. The growth of the Terra Australis Orogen during the Paleozoic is largely attributed to accretionary style tectonics. These previously unknown findings indicate that the Terra Australis Orogen was not just a simple accretionary style orogen but rather a complex system with multiple tectonic styles operating in tandem including collisional tectonics

    Geochemistry of Ocean Floor and Fore-arc Serpentinites: Constraints on the Ultramafic Input to Subduction Zones

    Get PDF
    We provide new insights into the geochemistry of serpentinites from mid-ocean ridges (Mid-Atlantic Ridge and Hess Deep), passive margins (Iberia Abyssal Plain and Newfoundland) and fore-arcs (Mariana and Guatemala) based on bulk-rock and in situ mineral major and trace element compositional data collected on drill cores from the Deep Sea Drilling Project and Ocean Drilling Program. These data are important for constraining the serpentinite-hosted trace element inventory of subduction zones. Bulk serpentinites show up to several orders of magnitude enrichments in Cl, B, Sr, U, Sb, Pb, Rb, Cs and Li relative to elements of similar compatibility during mantle melting, which correspond to the highest primitive mantle-normalized B/Nb, B/Th, U/Th, Sb/Ce, Sr/Nd and Li/Y among subducted lithologies of the oceanic lithosphere (serpentinites, sediments and altered igneous oceanic crust). Among the elements showing relative enrichment, Cl and B are by far the most abundant with bulk concentrations mostly above 1000 µg g−1 and 30 µg g−1, respectively. All other trace elements showing relative enrichments are generally present in low concentrations (µg g−1 level), except Sr in carbonate-bearing serpentinites (thousands of µg g−1). In situ data indicate that concentrations of Cl, B, Sr, U, Sb, Rb and Cs are, and that of Li can be, increased by serpentinization. These elements are largely hosted in serpentine (lizardite and chrysotile, but not antigorite). Aragonite precipitation leads to significant enrichments in Sr, U and B, whereas calcite is important only as an Sr host. Commonly observed brucite is trace element-poor. The overall enrichment patterns are comparable among serpentinites from mid-ocean ridges, passive margins and fore-arcs, whereas the extents of enrichments are often specific to the geodynamic setting. Variability in relative trace element enrichments within a specific setting (and locality) can be several orders of magnitude. Mid-ocean ridge serpentinites often show pronounced bulk-rock U enrichment in addition to ubiquitous Cl, B and Sr enrichment. They also exhibit positive Eu anomalies on chondrite-normalized rare earth element plots. Passive margin serpentinites tend to have higher overall incompatible trace element contents than mid-ocean ridge and fore-arc serpentinites and show the highest B enrichment among all the studied serpentinites. Fore-arc serpentinites are characterized by low overall trace element contents and show the lowest Cl, but the highest Rb, Cs and Sr enrichments. Based on our data, subducted dehydrating serpentinites are likely to release fluids with high B/Nb, B/Th, U/Th, Sb/Ce and Sr/Nd, rendering them one of the potential sources of some of the characteristic trace element fingerprints of arc magmas (e.g. high B/Nb, high Sr/Nd, high Sb/Ce). However, although serpentinites are a substantial part of global subduction zone chemical cycling, owing to their low overall trace element contents (except for B and Cl) their geochemical imprint on arc magma sources (apart from addition of H2O, B and Cl) can be masked considerably by the trace element signal from subducted crustal component

    Highly Refractory Peridotites on Macquarie Island and the Case for Anciently Depleted Domains in the Earth's Mantle

    Get PDF
    Macquarie Island (Southern Ocean) is a fragment of Miocene ocean crust and upper mantle formed at a slow-spreading ridge system, uplifted and currently exposed above sea-level. The crustal rocks on the island have unusually enriched compositions and the strong signature of an enriched source requires low overall degrees of melt depletion in the underlying mantle. Peridotites on the island, however, are highly refractory harzburgites that can be modeled as residues of >20-25% of near-fractional melting from which all the free clinopyroxene was melted out. The peridotites have some of the highest spinel Cr-numbers (0·40-0·49) and lowest orthopyroxene-core Al2O3 concentrations (2·7-3·0 wt %) reported so far for oceanic peridotites. The peridotites were subsequently modified by melt-rock reactions underneath the Miocene ridge system. The refractory character of the peridotites is inconsistent with the slow-spreading ridge setting as well as with the enriched character of the overlying crust, and must indicate a previous depletion event; the peridotites are not the source residue of the overlying ocean crust on Macquarie Island. Osmium isotopic compositions of peridotite samples are very unradiogenic (187Os/188Os = 0·1194-0·1229) compared with normal abyssal peridotites and indicate a long-lived rhenium depletion. Proterozoic rhenium-depletion ages indicate that these rocks have preserved a memory of an old mantle melting event. We argue that the Macquarie Island harzburgites are samples from an anciently depleted refractory mantle reservoir that may be globally important, but that is generally overlooked because of its sterility; that is, its inability to produce basalts. This reservoir may preserve key information about the history of the Earth's mantle as a whol

    Future Understanding of Tectonics, Ores, Resources, Environment and Sustainability (FUTORES) II Conference: abstract volume

    Get PDF
    With the increasing world population and living standards the demand for mineral and energy resources continues to grow. Future exploration will need to target resources at increasing depths and in areas with cover, and will require an improved understanding of mineral and energy systems and advances in exploration methods and approaches. The Economic Geology Research Centre (EGRU) at James Cook University has organized the FUTORES II conference to summarise recent developments in the exploration and understanding of major types of mineral deposits, to examine the key issues and techniques critical to future minerals and energy exploration, and to discuss the way forward. The conference is being held in tropical Townsville, Queensland, Australia, on 4-7 June 2017. It is following on from the inaugural and highly successful FUTORES conference held in Townsville in 2013.FUTORES II will bring together researchers, explorers and government agencies to address issues related to the sustainable supply and utilisation of mineral and energy resources. The conference has three symposia: the David Groves Symposium - New Insights in Mineral Deposit Understanding, the New Technologies and Approaches in Mineral Exploration Symposium, and the Tectonics, Basins and Resources Symposium. The conference is convened by EGRU, an organisation that was established in 1982 to strengthen the links between research and exploration, to promote exploration-oriented research, and to facilitate knowledge transfer. EGRU has a track record of organising successful major conferences to facilitate the exchange of knowledge and ideas and to stimulate new ideas for cutting-edge research and exploration. The Hydrothermal Odyssey conference in 2001, and the STOMP (Structure, Tectonics and Ore Mineralization Processes) conference in 2005, both attracted over 200 participants. In 2009 EGRU collaborated with the SGA to host the tenth biennial SGA conference in Townsville - Smart Science for Exploration and Mining - which attracted over 480 delegates from around the world. In 2013 the first FUTORES conference attracted around 250 participants from 15 countries. FUTORES II is looking to be equally successful and has so far attracted around 265 registrants. This conference abstract volume contains 134 abstracts covering a wide range of topics related to mineral and energy resources, tectonics and metallogenesis. The abstracts have been reviewed and edited by the Editorial Committee and, in this volume, are organised in alphabetical order of the first author. We thank the delegates for their abstracts and the reviewers for ensuring the quality of the abstract volume

    High-Grade Copper and Gold Deposited During Postpotassic Chlorite-White Mica-Albite Stage in the Far Southeast Porphyry Deposit, Philippines

    Get PDF
    Ninety-eight underground diamond holes (~102 km) drilled by Far Southeast Gold Resources Inc. at the Far Southeast porphyry Cu-Au deposit, Philippines, from 2011 to mid-2013, provide a three-dimensional exposure of the deposit between 700- and –750-m elevation, with surface at ~1,400-m elevation. Far Southeast contains an inferred resource of 891.7 million tonnes (Mt) averaging 0.7 g/t Au and 0.5 wt % Cu, equivalent to 19.8 Moz Au and 4.5 Mt Cu. This contribution reports the spatial and temporal distribution of alteration and mineralization at Far Southeast, notably a white-mica–chlorite-albite assemblage that formed after early secondary biotite and before late quartz–white-mica–pyrite alteration and that is associated with the highest copper and gold grades. Alteration assemblages were determined by drill core logging, short-wavelength infrared (SWIR) spectral analysis, petrographic examination, and a quantitative evaluation of materials by scanning electron microscopy (QEMSCAN) study. Alteration is limited around sparse veins or pervasive where vein density is high and the alteration halos coalesce. The alteration and mineralization zones with increasing depth are as follows: (1) the lithocap of quartz-alunite–dominated advanced argillic-silicic alteration that hosts part of the Lepanto high-sulfidation Cu-Au epithermal deposit (mostly above ~700-m elevation), (2) an aluminosilicate-dominated zone with coexisting pyrophyllite-diaspore ± kandite ± alunite and white mica (~700- to ~100-m elevation), (3) porphyry-style assemblages characterized by stockwork veins (below ~500-m elevation), (4) the 1 wt % Cu equivalent ore shell (~400- to –300-m elevation), and (5) an underlying subeconomic zone (about –300- to –750-m elevation, the base of drilling). The ore shells have a typical bell shape centered on a dioritic intrusive complex. The paragenetic sequence of the porphyry deposit includes stage 1 granular gray to white quartz-rich (± anhydrite ± magnetite ± biotite) veins with biotite-magnetite alteration. These were cut by stage 2 lavender-colored euhedral quartz-rich (± anhydrite ± sulfides) veins, with halos of greenish white-mica–chlorite-albite alteration. The white mica is largely illite, with an average 2,203-nm Al-OH wavelength position. The albite may reflect the mafic nature of the diorite magmatism. The quartz veins of this stage are associated with the bulk of copper deposited as chalcopyrite and bornite, as well as gold. Thin Cu sulfide (chalcopyrite, minor bornite) veins with minor quartz and/or anhydrite (paint veins), with or without a white-mica halo, also occur. These veins were followed by stage 3 anhydrite-rich pyrite-quartz veins with white-mica (avg 2,197 nm, illite)–pyrite alteration halos. Combined with previous studies, we conclude that this porphyry system, including the Far Southeast porphyry and Lepanto high-sulfidation Cu-Au deposits, evolved over a period of 0.1–0.2 m.y. Three diorite porphyry stocks were emplaced, and by ~1.4 Ma biotite-magnetite–style alteration formed with quartz-anhydrite veins and deposition of ≤0.5% Cu and ≤0.5 g/t Au (stage 1); coupled with this alteration style, a barren lithocap of residual quartz with quartz-alunite halo plus kandite ± pyrophyllite and/or diaspore formed at shallower depth (>700-m elevation). Subsequently, lavender quartz and anhydrite veins with bornite and chalcopyrite (high-grade stage, avg ~1 wt % Cu and ~1 g/t Au) and white-mica–chlorite-albite halos formed below ~400-m elevation (stage 2). They were accompanied by local pyrite replacement, the formation of hydrothermal breccias and Cu sulfide (paint) veins. Stage 2 was followed at ~1.3 Ma by the formation of igneous breccias largely along the margins of the high-grade zones and stage 3 pyrite-quartz-anhydrite ± chalcopyrite veins with white-mica (mostly illitic) halos. At shallower depths in the transition to the base of the lithocap, cooling led to the formation of aluminosilicate minerals (mainly pyrophyllite ± diaspore ± dickite) with anhydrite plus high-sulfidation-state sulfides and pyrite veinlets. Consistent with previous studies, it is likely that the lithocap-hosted enargite-Au mineralization formed during this later period

    The age of homo naledi and associated sediments in the rising star cave, South Africa

    Get PDF
    New ages for flowstone, sediments and fossil bones from the Dinaledi Chamber are presented. We combined optically stimulated luminescence dating of sediments with U-Th and palaeomagnetic analyses of flowstones to establish that all sediments containing Homo naledi fossils can be allocated to a single stratigraphic entity (sub-unit 3b), interpreted to be deposited between 236 ka and 414 ka. This result has been confirmed independently by dating three H. naledi teeth with combined U-series and electron spin resonance (US-ESR) dating. Two dating scenarios for the fossils were tested by varying the assumed levels of222Rn loss in the encasing sediments: a maximum age scenario provides an average age for the two least altered fossil teeth of 253 +82/-70 ka, whilst a minimum age scenario yields an average age of 200 +70/-61 ka. We consider the maximum age scenario to more closely reflect conditions in the cave, and therefore, the true age of the fossils. By combining the US-ESR maximum age estimate obtained from the teeth, with the U-Th age for the oldest flowstone overlying Homo naledi fossils, we have constrained the depositional age of Homo naledi to a period between 236 ka and 335 ka. These age results demonstrate that a morphologically primitive hominin, Homo naledi, survived into the later parts of the Pleistocene in Africa, and indicate a much younger age for the Homo naledi fossils than have previously been hypothesized based on their morphologyWe would also like to thank the many funding agencies that supported various aspects of this work. In particular we would like to thank the National Geographic Society, the National Research Foundation and the Lyda Hill Foundation for significant funding of the discovery, recovery and initial analysis of this material. Further support was provided by ARC (DP140104282: PHGMD, ER, JK, HHW; FT 120100399: AH). The ESR dosimetry study undertaken by CENIEH and Griffith University has been supported by a Marie Curie International Outgoing Fellowship (under REA Grant Agreement n˚ PIOF-GA-2013–626474) of the European Union’s Seventh Framework Programme (FP7/2007-2013) and an Australian Research Council Future Fellowship (FT150100215). ESR and U-series dating undertaken at SCU were supported by ARC (DP140100919: RJB)
    corecore