70 research outputs found

    Geological Model of Latvia Developed at Riga Technical University (2010ā€“2015)

    No full text
    Hydrogeological models (HM) are developed in order to gain information that is needed for managing the protection and sustainable consumption of groundwater resources. The researchers of Riga Technical University (RTU) have developed two regional scales of HM of Latvia: in 1993-1996, REMO (Large Riga) and, in 2010-2012, LAMO1 (the first HM version). REMO covered the central part of Latvia and its plane approximation step was 4000 meters. LAMO1 encloses the ground territory of Latvia, the Gulf of Riga, and border areas with neighbouring countries (Estonia, Lithuania, Russian Federation, Belorussia). The HM plane step is 500 metres. Presently, the neighbouring areas of HM are not active. In the case of a transboundary projects the neighbouring country must provide hydrogeological data necessary to activate its neighbouring area. LAMO1 generalizes geological and hydrogeological data that have been accumulated by the Latvian Environment, Geology and Meteorology Centre (LEGMC). LAMO runs into the environment of licensed software Groundwater Vistas that is being used worldwide for modelling groundwater processes. In 2012-2015, LAMO1 was considerably updated, in order to improve the quality of results provided by HM. The LAMO2 version (2013) accounted for deep river valleys cutting the primary strata; the thick Devonian D2ar aquifer was replaced by the two aquifers and the aquitard that separated them; due to this innovation, the number of the HM planes increased from 25 to 27. In 2014, the LAMO3 version was obtained by increasing the density of the HM hydrogeological network (number of rivers and lakes, increased, accordingly, from 199 to 469 and from 67 to 127). For the current LAMO4 version, the plane step was reduced from 500 to 250 meters; the groundwater inflow for rivers was calibrated by accounting for information obtained from measurements of river flows. For LAMO1 and LAMO2, the permeability of primary aquifers (k-maps) was modelled by using a constant permeability value for an aquifer. In LAMO3 and LAMO4, more realistic k-maps were obtained by accounting for pumping data of wells. Presently, the latest LAMO4 version is being used by LEGMC and RTU specialists as the source of information on the geometry and permeability of geological strata, on distributions of groundwater heads and flows, on interaction between groundwater and surface water bodies (sea, lakes, rivers, precipitation). LAMO4 has been used by RTU researchers as a tool for investigating nature processes of the groundwater system of Latvia. The first results were quite unexpected, because it was found that the river watershed basin concept could not be used for the deepest strata of the basin. The research on LAMO3 and LAMO4 is supported by the Latvian state research program EVIDEnT

    Latvijas ReÄ£ionālo hidroÄ£eoloÄ£isko modeļu Ä«stenoÅ”anas vēsture RÄ«gas Tehniskajā universitātē (metodes un problēmas)

    No full text
    KopÅ” 1993. gada RÄ«gas Tehniskā universitāte (RTU) ir piedalÄ«jusies Latvijas reÄ£ionālo hidroÄ£eoloÄ£isko modeļu Ä«stenoÅ”anā: ReÄ£ionālais Modelis (REMO) ā€žLielā RÄ«gaā€ veidots no 1993. gada lÄ«dz 1996. gadam un 2010. gadā uzsākts Ä«stenot ERAF projektu ā€žHidroÄ£eoloÄ£iskā modeļa izveidoÅ”ana Latvijas pazemes Å«dens krājumu apsaimniekoÅ”anai un vides atveseļoÅ”anaiā€ (vienoÅ”anās numurs Nr. 2010/0220/2DP/2.1.1.1.0/10 APIA/VIAA/011). Modelis REMO izveidots kopā ar bijuÅ”o Valsts Ä¢eoloÄ£ijas dienestu un paredzēts informācijas apkopoÅ”anai par Latvijas centrālās daļas Devona artēziskajām Å«densgÅ«tnēm (RÄ«ga, JÅ«rmala, Jelgava u.c.). HidroÄ£eoloÄ£iskais modelis (HM) aptver 168kmƗ156km platÄ«bu. Režģa plaknes solis ir 4000m. Vertikālā virzienā REMO satur 10 horizontus, kurus atdala sprostslāņi. KopÄ«gais mezglu skaits N=43Ɨ40Ɨ10=17200. ModelÄ“Å”anas rezultāti apkopoti karÅ”u atlasā, kurÅ” publicēts 1996. g. Modelis tika izmantots RÄ«gas pilsētas jauno pazemes Å«dens avotu pētÄ«Å”anai (1996.g.), Inčukalna gudrona dÄ«Ä·u areāla HM veidoÅ”anai (1998.g.) un Å«densgÅ«tnes aprēķiniem Coca-Cola rÅ«pnÄ«cai (2009.g.) 1996.gadā reÄ£ionālā HM ā€žLielā RÄ«gaā€ izveidoÅ”ana bija ievērojams profesionāls sasniegums. Modeļa Ä«stenoÅ”anai tika radÄ«ti un izmantoti jauni algoritmi un programmatÅ«ras rÄ«ki (galvenā modelējoŔā programma, Ä£eoloÄ£isko datu interpolācijas programma, kura var izmantot lÄ«nijas kā datu nesējus, zemes virsmas reljefa karte kā robežnoteikums reÄ£ionālās infiltrācijas plÅ«smas automātiskai aprēķināŔanai u.c.). MÅ«sdienu vērtējumā HM ā€žLielā RÄ«gaā€ ir Ŕādi trÅ«kumi: -modelis aptver tikai centrālo Latvijas daļu; -modeļa realizācijas programmatÅ«ra ir oriÄ£ināls rÄ«ks, kura sekmÄ«gai izmantoÅ”anai lietotājam (Valsts Ä£eoloÄ£ijas dienests) bija jāsaglabā cieÅ”a saite ar autoriem. Pēc 1996. gada Ŕāda saite nepastāvēja un tāpēc HM tika izmantots tikai RTU; -modeļa plaknes aproksimācijas solis 4000m ir pārāk liels; -modeļa izmantotā kvazi-trÄ«sdimensiju galÄ«go starpÄ«bu aproksimācijas shēma nedod precÄ«zu saskaņojumu ar licenzētām programmatÅ«rām, kuras izmanto Å«dens daļiņu un piesārņojuma kustÄ«bas modelÄ“Å”anai. Valsts Ä£eoloÄ£ijas dienestam pēc 1996. gada zuda aktÄ«va vajadzÄ«ba izmantot HM ā€žLielā RÄ«gaā€ Ŕādu iemeslu dēļ: -tika pieņemts un Ä«stenots lēmums par Daugavas plaÅ”u izmantoÅ”anu RÄ«gas pilsētas Å«dens apgādei; -visā Latvijā pazemes Å«dens patēriņŔ bÅ«tiski samazinājās. Laika posmā starp REMO un jauno ERAF projektu RTU Vides modelÄ“Å”anas centrs, realizējot praktiskos uzdevumus, bÅ«tiski pilnveidoja prasmes, metodes un rÄ«kus HM veidoÅ”anai: -HM tiek veidoti komecprogrammatÅ«ras Groundwater Vistas (GV) vidē; Å Ä« programmatÅ«ra tiek regulāri modernizēta (Å”obrÄ«d izmanto GV5 versiju) un tiek plaÅ”i izmantota Eiropā un pasaulē; GV ietver plaÅ”u specializēto rÄ«ku klāstu: MODFLOW, MODPATH, MT3D u.c., kurus pilnveido ASV Ä£eoloÄ£ijas dienests; -vairākkārt modernizēts (1999.g., 2007.g.) RTU izstrādātais Ä£eoloÄ£isko datu interpolācijas rÄ«ks; -pilnveidota metodika, kura paredz zemes virsmas reljefa kartes izmantoÅ”anu infiltrācijas plÅ«smas realizācijai; -aprobēta HM Ä«stenoÅ”anas metode, kura neprasa (vismaz modeļa bÅ«ves sākumā) izmantot reālo Ä£eoloÄ£iskās vides Ä£eometriju. ERAF projektā (2 gadi Ä«stenoÅ”anai, finansējums 140900Ls) Ä«stenotais HM bÅ«s daļa no Latvijas Vienotās vides informācijas sistēmas, kuru uztur Latvijas Vides, Ä£eoloÄ£ijas un meteoroloÄ£ijas centrs (LVÄ¢MC). Modeļa esamÄ«ba uzlabos Ŕīs sistēmas kvalitāti, jo bÅ«s publiski pieejami dati, kuri nepiecieÅ”ami pazemes Å«dens resursu racionālai pārvaldÄ«bai un Eiropas SavienÄ«bas direktÄ«vu Ä«stenoÅ”anai pirmajam plānoÅ”anas ciklam (2004.g.-2015.g.). Latvijas HM aptvers 475kmļ‚“300km areālu aktÄ«vajai pazemes Å«dens zonai (lÄ«dz Pērnavas horizontam), kuru Latvijā izmanto dzeramā Å«dens apgādei. Modelis tiks realizēts GV vidē, plaknes aproksimācijas solis 500m, izmantojot pilno trÄ«sdimensiju galÄ«go starpÄ«bu aproksimācijas shēmu. Galvenie HM Ä«stenoÅ”anas pasākumi ir Ŕādi: -prasÄ«bu saskaņoÅ”ana ar LVÄ¢MC par HM kā Vienotās vides informācijas sistēmas moduli; modeļa

    Limits and Presuppositions on Creating and Use of the Regional Hydrogeological Model of Latvia

    No full text
    Te main limits regarding the regional hydrogeological model (HM) of Latvia (see Fig. 1) are, as follows: -HM will be used for management of drinking groundwater resources of Latvia; -HM is created by the Environment Modelling Centre team of the Riga Technical University (RTU) ; the project is co financed by the European Fund of Regional Development; -the project duration is 24 months; in 2013, HM must be established; -geological and hydrogeological information, needed for establishing HM, is provided by the Latvian Environment, Geology and Meteorology Centre (LEGMC); -principal parameters of HM must be agreed between RTU and LEGMC; -data carried by HM must be publicly available as a part of Latvia environment information system; the system is supported by LEGMC; -during five years (till 2017), RTU and LEGMC cannot use HM commercially. Fig. 1: Location of Latvia HM HM of Latvia will generalize geological and hydrogeological information accumulated by LEGMC. HM will also serve as the base for creating more detailed local HM. It is not possible to incorporate into regional HM all data that can be provided by LEGMC. Reasonable reduction of HM complexity can be achieved by implementing the following presuppositions: -complexity and dimensions of HM must not exceed feasibility of a modern personal computer used to run HM; HM simulates the steady state average regimes of the groundwater flow; the HM area size is 475kmļ‚“300km; the HM volume is approximated by the finite difference method; its plane approximation step is 500 meters; the spatial HM grid contains 25 planes; therefore, the grid consists of 951ļ‚“601ļ‚“25=14.86ļ‚“106 nodes; the HM volume represents the active groundwater zone that is bedded by the regional Narva aquitard; -to ensure compatibility with models and software tools of other countries, the commercial program ā€œGroundwater Vistasā€ (GV) is used for running of HM; the program is being regularly updated (GV- 6 version is available); it contains software tools MODFLOW, MODPATH, MT3D applied for groundwater modelling worldwide; -at the present, HM consists of its active and passive parts; the active part includes the land territory of Latvia and the Gulf of Riga; the passive part represents border areas of neighboring countries. However, HM is open for trans boundary modelling projects; then a neighboring country provides data for activating the HM area involved; -although, buried valleys may be of considerable importance, they are not accounted for by the current HM version; it is difficult to create them geometrically, a filling material of valleys may be unknown; -in HM, only the Narva aquitard is continuous; the other geological layers are discontinuous, because they include areas with a zero thickness; for the model, these areas have the thickness 0.02 meters, their permeability is 1.0m/day; -three elevation surfaces of HM are especially important: -the hydrogeological relief relh that represents the ground surface where the hydrographical network is incorporated; -the geological relief relg that gives land surface elevations; -the sub Quaternary surface subQ that covers the system of basic geological layers. The difference mw=relh-relg is the thickness of surface water bodies. (in HM, mw >0 for the sea area and for the Daugava river with its three lakes of hydroelectric power stations); for other water bodies (lakes, rivers), mw =0. The difference āˆ†=relg-subQ is used for obtaining the Quarternary system thickness mQ: mQ=āˆ† if āˆ†>1.0; mQ=1.0 if āˆ†ļ‚£1.0 and relg=subQ+1; by correcting relg, along the river valleys where āˆ†<0, the subQ surface remains unchanged (no deep valleys are cut into it); otherwise, the grid nodes will be lost where river long lines elevations must be connected (option River of GV): -the relh map serves as the piezometric boundary condition, on the HM top; due to this condition, HM automatically creates a feasible infiltration flow distribution; -no re

    Latvijas hidroģeoloģiskais modelis pazemes dzeramā ūdens krājumu pārvaldīŔanai un atveseļoŔanai

    No full text
    RÄ«gas Tehniskā universitāte (RTU) ir piedalÄ«jusies Latvijas reÄ£ionālo hidroÄ£eoloÄ£isko modeļu (HM) izveidoÅ”anā pazemes Å«dens krājumu racionālai apsaimniekoÅ”anai. ReÄ£ionālais modelis (REMO) ā€žLielā RÄ«gaā€ veidots no 1993. gada lÄ«dz 1996. gadam kopā ar bijuÅ”o Valsts Ä£eoloÄ£ijas dienestu. Modelis REMO aptvēra Latvijas centrālo daļu. HM izveidoÅ”anu visai Latvijas teritorijai RTU uzsāka 2010. gadā. Rakstā aplÅ«kota Å«dens krājumu apsaimniekoÅ”ana Latvijā, dots Latvijas HM apraksts un izklāstÄ«ti tā veidoÅ”anas etapi un metodika. Modelis tiks iekļauts Latvijas Vienotajā vides informācijas sistēmā, kuru uztur Latvijas Vides, Ä£eoloÄ£ijas un meteoroloÄ£ijas centrs. Par Latvijas HM tika ziņots Apvienotajā Pasaules LatvieÅ”u zinātnieku 3. kongresā, RÄ«gā, 25. oktobrÄ« 2011.g

    Joining Pointwise Geological Data to Interpolation Grids if the Data Search Area is a Circle

    No full text
    Abstract ā€“ Pointwise geological data ļ³in are used as initial information for creating hydrogeological models (HM). Interpolation methods are applied to create ļ³-maps on (xy)ļ€­grids of HM. The maps represent geometrical and physical features of geological layers. If solutions of boundary field problems are used as interpolation results then ļ³in represent boundary conditions. They must be joined to nodes of the interpolation grid. In this paper the case is considered when the local data search region presents a circle. Features of this approach are investigated if the circle radius changes from zero to two plane steps of a uniform (xy)ļ€­grid

    Appliance of Pumping Data of Wells for Obtaining Transmissivity Distributions of Aquifers for Hydrogeological Model of Latvia

    No full text
    Abstract ā€“ In 2010-2012, the hydrogeological model (HM) of Latvia LAMO was established by scientists of Riga Technical University (RTU). LAMO generalizes geological and hydrogeological information accumulated by the Latvian Environment, Geology and Meteorology Centre (LVGMC). The commercial program Groundwater Vistas (GV) is used for running LAMO. In 2013-2014, LAMO was considerably upgraded. Density of the hydrogeological network (rivers, lakes) was increased, cuttings of river valleys into primary geological strata were accounted for, transmissivity distributions for aquifers were refined. To improve transmissivity data of HM aquifers, information provided by pumping tests for wells was used. The refined transmissivity data were applied, to create the permeability maps of aquifers as the variable initial data for the GV system. To accomplish methods of numerical interpolation and digital image processing were used reliability

    Comparison of Methods for Joining Pointwise Geological Data to Interpolation Grids

    No full text
    Abstract ā€“ Pointwise geological initial data ļ³in are used for creating hydrogeological models (HM). By processing ļ³in by interpolation methods, ļ³ - maps are created on (x, y) ā€“ grids of HM. The maps represent geometrical and physical features of geological layers. If solutions of boundary field problems are applied as interpolation results (ļ³ - maps) then ļ³in serve as the boundary conditions of the first kind. They must be joined to nodes of the interpolation grid. In this paper, three methods are compared that may be applied to perform this task when the local date search region is a square, a circle, an area enclosed by hyperbola arcs. Features of these methods are examined and recommendations on their optimal use are given

    Latvijas hidroģeoloģiskais modelis pazemes dzeramā ūdens krājumu pārvaldīŔanai un atveseļoŔanai

    No full text
    Valstu un to apgabalu hidroÄ£eoloÄ£iskie modeļi tiek veidoti pazemes Å«dens krājumu racionālas izmantoÅ”anas nodroÅ”ināŔanai. Laikā no 1993. gada lÄ«dz 1996. gada RÄ«gas Tehniskā universitāte (RTU) kopā ar bijuÅ”o Valsts Ä£eoloÄ£ijas dienestu Ä«stenoja reÄ£ionālo modeli (REMO) ā€˜Lielā RÄ«gaā€ Latvijas centrālajai daļai. Å is modelis bija paredzēts hidroÄ£eoloÄ£iskās informācijas apkopoÅ”anai par te izvietotajām dzeramā Å«dens ieguves vietām (RÄ«ga, JÅ«rmala, Jelgava u.c.). HidroÄ£eoloÄ£iskais modelis (HM) aptvēra 168kmļ‚“156km platÄ«bu. Aproksimācijas režģa solis bija 4000m. Vertikālā virzienā REMO saturēja 10 pazemes Å«dens horizontus, kurus atdalÄ«ja deviņi sprostslāņi. ModelÄ“Å”anas rezultāti apkopoti karÅ”u atlasā, kas publicēts 1996. gadā. Modelis tika izmantots RÄ«gas pilsētas jauno pazemes Å«dens avotu pētÄ«Å”anai (1996. gads), Inčukalna dÄ«Ä·u piesārņojuma areāla HM veidoÅ”anai (1998. gads) un Å«densgÅ«tnes aprēķiniem Coca-Cola rÅ«pnÄ«cai (2009. gads). 1996. gadā reÄ£ionālā HM ā€˜Lielā RÄ«gaā€ izveidoÅ”ana bija ievērojams profesionāls sasniegums. Tomēr Å”is HM neatbilst mÅ«sdienu prasÄ«bām, kuras Latvijai nosaka Eiropas SavienÄ«bas Å«dens DirektÄ«vas: nav aptverta visa Latvijas teritorija, pārāk liels HM plaknes režģa solis, modelis veidots oriÄ£inālā programmatÅ«ras vidē, kura nav savietojama ar mÅ«sdienÄ«gām komercprogrammatÅ«rām u.c. ÄŖstenojot Eiropas ReÄ£ionālā attÄ«stÄ«bas fonda lÄ«dzfinansētu projektu ā€žHidroÄ£eoloÄ£iskā modeļa izveidoÅ”ana Latvijas pazemes Å«dens krājumu apsaimniekoÅ”anai un vides atveseļoÅ”anaiā€, RTU veido reÄ£ionāla tipa HM Latvijas aktÄ«vajai pazemes Å«deņu zonai (lÄ«dz Pērnavas horizontam), no kuras var iegÅ«t dzeramo Å«deni. Projekta Ä«stenoÅ”anas laiks ir 24 mēneÅ”i (no 2010. gada lÄ«dz 2012. gadam). HM bÅ«s daļa no Latvijas Vienotās vides informācijas sistēmas, kuru uztur Latvijas Vides, Ä£eoloÄ£ijas un meteoroloÄ£ijas centrs (LVÄ¢MC). Modeļa esamÄ«ba uzlabos Ŕīs sistēmas kvalitāti, jo bÅ«s publiski pieejami dati, kas nepiecieÅ”ami pazemes Å«deņu resursu racionālai pārvaldÄ«bai un Eiropas SavienÄ«bas direktÄ«vu Ä«stenoÅ”anai Latvijā pirmajā plānoÅ”anas ciklā (2004.g.-2015.g). HidroÄ£eoloÄ£iskos un Ä£eoloÄ£iskos datus HM izveidoÅ”anai nodroÅ”ina LVÄ¢MC. Ar LVÄ¢MC ir saskaņotas prasÄ«bas, kuras HM jānodroÅ”ina kā vides informācijas sistēmas elementam. Latvijas HM aptver 475kmļ‚“300km plaÅ”u laukumu. Modeļa plaknes režģa aproksimācijas solis bÅ«s 500m un Ä£eoloÄ£isko slāņu skaits bÅ«s 25 ( no tiem 13 bÅ«s Å«dens horizonti). Modelis tiks realizēts komercprogrammatÅ«ras ā€žGroundwater Vistasā€ vidē, kura tiek plaÅ”i izmantota pasaules valstÄ«s. Ja nepiecieÅ”ams, uz HM bāzes varēs veidot lokālus detalizētus modeļus pazemes Å«densgÅ«tņu režīma verifikācijai un vides piesārņojuma problēmu risināŔanai. Paredzēts, ka sadarbojoties RTU un LVÄ¢MC, Ä«stenotā Latvijas HM iespējas varēs paplaÅ”ināt atbilstoÅ”i nākoÅ”o plānoÅ”anas ciklu prasÄ«bām

    Finding of Groundwater Recharge, Transit and Discharge Areas

    No full text
    Groundwater recharge, transit and discharge areas for aquifers must be found. Their location depends on the influence of ground surface and hydrographical network (rivers, lakes, sea). It is commonly agreed that the recharge areas are located at hilly places where maximums of infiltration flows and piezometric groundwater levels coincide. Such method was applied for the hydrogeological model of Latvia LAMO. The model provides results for a complex spatial hydrogeological system where conditions even within one aquifer may differ considerably. For this reason, the common method of finding recharge, transit and discharge areas fails to provide accurate results. The new method has been developed. It is based on appliance of the ratio for velocities of vertical to horizontal groundwater flows. The resulting velocity of the vertical flow is found as the difference of velocities of flows on the top and bottom surfaces of the aquifer. The ratio r is the non-dimensional function. Its values r = 1 and r = 0 determine the locations of boundaries for the recharge and discharge areas, accordingly. For the transit area 0 1 and r < 1, correspondingly. The new method provides accurate results even for discontinuous aquifers where the zones of zero thickness appear. Within such zones r = 0. The method will be applied as a tool for investigating complex groundwater processes that are modelled by LAMO. The method was used for extra calibration of LAMO in order to improve its results. The research was supported by the Latvian State Research Program EVIDEnT

    Appliance of Pumping Data of Wells for Obtaining Transmissivity Distributions of Aquifers for Hydrogeological Model of Latvia

    No full text
    In 2010 āˆ’ 2012 the hydrogeological model (HM) of Latvia called LAMO was developed by the scientists of Riga Technical University (RTU). LAMO generalizes geological and hydrogeological information accumulated by the Latvian Environment, Geology and Meteorology Centre (LVGMC). The commercial program Groundwater Vistas (GV) was used for running LAMO. In 2013 āˆ’ 2014 LAMO was considerably upgraded. Density of the hydrogeological network (rivers and lakes) was increased, cuttings of river valleys into primary geological strata were accounted for, transmissivity distributions for aquifers were refined. To improve transmissivity data of HM aquifers, information provided by pumping tests for wells was used. The refined transmissivity data were applied to create the permeability maps of aquifers as the variable initial data for the GV system. To accomplish these task methods of numerical interpolation and digital image processing were used
    • ā€¦
    corecore