20 research outputs found

    Demonstration of Ion Trap Principles

    Get PDF
    Particle trapping is a state-of-the-art technology, which already a powerful tool for scientists working with micro- and nano-components. Much interest now revolves around length scales where quantum mechanical effects become pronounced. Quantum mechanics forms our only framework for understanding many problems in solid-state physics (e.g., magnetism), and is playing an ever more important role in applied chemistry, biochemistry and many other areas. Trapping technologies provide a test bed for systematic exploration of fundamental paradigms, offering enhancements to our understanding of key mechanisms and, perhaps, opportunities for quantum information technology. We have assembled a Newtonian Lab demonstration trap, demonstrating key principles of an ion trap, as a first step toward more advanced particle-trapping technology. This system utilizes a low-frequency alternating voltage to trap charged micro-particles. We have confirmed that trapping has occurred, by scattering visible laser beams off the trapped particles. Our next step is to explore designs for a hybrid combination of high-frequency optical tweezers with the sort of low-frequency electrostatic trap we have demonstrated, with the goal of stabilizing particles trapped in low-pressure atmospheres, where it may be possible to achieve cooling towards the quantum mechanical ground state of at least one degree of freedom

    Optical Cloaking by Aberation Correction

    Get PDF
    Light incident on a material is scattered and then continues its propagation in seemingly random directions. If one can force light to pass through a material and not scatter, however, then one could “see” through the material. This scattering of light can be described as aberration within the light. A technique used for “Aberration Correction” is adding phase-shifts to regions of light allowing for all wave fronts of light to interfere in a constructive manner. This is accomplished in the use of a Spatial Light Modulator (SLM). The SLM, an array of linearly aligned crystals, allow for added phase shifts to light incident on the SLM. By shifting the phase of light, it is possible to allow light to pass through some material without having the light be scattered by the material. This case allows for one to “see” through the material, on account of the light passing through the material rather than being scattered by it. This technology has potential to be used for non-invasive surgeries as well as being a strong starting point for research into optical cloaking. If a procedure for allowing light to pass through a material is developed, then the procedure could be used for the purpose of Optical Cloaking. By expanding the region in which one “sees” through a material so that one encloses the entire material, one would cloak the entire material rather than “see” through some region of it. This procedure would have applications in both medical and military technology
    corecore