research

Demonstration of Ion Trap Principles

Abstract

Particle trapping is a state-of-the-art technology, which already a powerful tool for scientists working with micro- and nano-components. Much interest now revolves around length scales where quantum mechanical effects become pronounced. Quantum mechanics forms our only framework for understanding many problems in solid-state physics (e.g., magnetism), and is playing an ever more important role in applied chemistry, biochemistry and many other areas. Trapping technologies provide a test bed for systematic exploration of fundamental paradigms, offering enhancements to our understanding of key mechanisms and, perhaps, opportunities for quantum information technology. We have assembled a Newtonian Lab demonstration trap, demonstrating key principles of an ion trap, as a first step toward more advanced particle-trapping technology. This system utilizes a low-frequency alternating voltage to trap charged micro-particles. We have confirmed that trapping has occurred, by scattering visible laser beams off the trapped particles. Our next step is to explore designs for a hybrid combination of high-frequency optical tweezers with the sort of low-frequency electrostatic trap we have demonstrated, with the goal of stabilizing particles trapped in low-pressure atmospheres, where it may be possible to achieve cooling towards the quantum mechanical ground state of at least one degree of freedom

    Similar works