29 research outputs found

    Effects of Boundary-Layer Ingestion on the Aero-Acoustics of Transonic Fan Rotors

    Get PDF
    The use of boundary-layer-ingesting, embedded propulsion systems can result in inlet flow distortions where the interaction of the boundary-layer vorticity and the inlet lip causes horseshoe vortex formation and the ingestion of streamwise vortices into the inlet. A previously-developed body-force-based fan modeling approach was used to assess the change in fan rotor shock noise generation and propagation in a boundary-layer-ingesting, serpentine inlet. This approach is employed here in a parametric study to assess the effects of inlet geometry parameters (offset-to-diameter ratio and downstream-toupstream area ratio) on flow distortion and rotor shock noise. Mechanisms related to the vortical inlet structures were found to govern changes in the rotor shock noise generation and propagation. The vortex whose circulation is in the opposite direction to the fan rotation (counter-swirling vortex) increases incidence angles on the fan blades near the tip, enhancing noise generation. The vortex with circulation in the direction of fan rotation (co-swirling vortex) creates a region of subsonic relative flow near the blade tip radius that decreases the sound power propagated to the far-field. The parametric study revealed that the overall sound power level at the fan leading edge is set by the ingested streamwise circulation, and that for inlet designs in which the streamwise vortices are displaced away from the duct wall, the sound power at the upstream inlet plane increased by as much as 9 dB. By comparing the far-field noise results obtained to those for a conventional inlet, it is deduced that the changes in rotor shock noise are predominantly due to the ingestion of streamwise vorticity

    An Investigation of Condensation Effects in Supercritical Carbon Dioxide Compressors

    Get PDF
    Supercritical CO[subscript 2](S-CO[subscript 2]) power cycles have demonstrated significant performance improvements in concentrated solar and nuclear applications. These cycles promise an increase in thermal-to-electric conversion efficiency of up to 50% over conventional gas turbines (Wright, S., 2012, "Overview of S-CO[subscript 2] Power Cycles," Mech. Eng., 134(1), pp. 40-43), and have become a priority for research, development, and deployment. In these applications the CO[subscript 2] is compressed to pressures above the critical value using radial compressors. The thermodynamic state change of the working fluid is close to the critical point and near the vapor-liquid equilibrium region where phase change effects are important. This paper presents a systematic assessment of condensation on the performance and stability of centrifugal compressors operating in S-CO[subscript 2]. The approach combines numerical simulations with experimental tests. The objectives are to assess the relative importance of two-phase effects on the internal flow behavior and to define the implications for radial turbomachinery design. The condensation onset is investigated in a systematic manner approaching the critical point. A nondimensional criterion is established that determines whether condensation might occur. This criterion relates the time required for stable liquid droplets to form, which depends on the expansion through the vapor-pressure curve, and the residence time of the flow under saturated conditions. Two-phase flow effects can be considered negligible when the ratio of the two time scales is much smaller than unity. The study shows that condensation is not a concern away from the critical point. Numerical two-phase calculations supported by experimental data indicate that the timescale associated with nucleation is much longer than the residence time of the flow in the saturated region, leaving little opportunity for the fluid to condense. Pressure measurements in a converging diverging nozzle show that condensation cannot occur at the level of subcooling characteristic of radial compressors away from the critical point. The implications are not limited to S-CO[subscript 2] power cycles but extend to applications of radial machines for dense, saturated gases. In the immediate vicinity of the critical point, two-phase effects are expected to become more prominent due to longer residence times. However, the singular behavior of thermodynamic properties at the critical point prevents the numerical schemes from capturing important gas dynamic effects. These limitations require experimental assessment, which is the focus of ongoing and future research.Mitsubishi Heavy Industries Takasago R&D Cente

    An Investigation of Nonlinear Flow Oscillations in a High-Pressure Centrifugal Pump

    Get PDF
    High-pressure multistage pumps and their coupled piping systems, typically used in the process and power generation industry, can experience dangerous system-level instabilities. This can occur at flow coefficients well away from the surge limit and in the absence of cavitation. Such a pumping system and a related new kind of instability are the focus of this paper. A system-wide instability was observed at 0.05 times rotor frequency for flow coefficients near maximum head rise but at negative slope, thus on the stable side of the head rise characteristic. A previous study based on system-level experiments concluded that this instability differs from classical surge, cavitation surge, rotating stall, and rotating cavitation, but the underlying mechanism and necessary flow conditions remain unknown. This paper investigates the root cause of the system-wide pump instability, employing a systematic analysis of the impact of geometry changes on pump stability and performance. It is found that the upstream influence of the unsteady flow separation in the return channel leads to a time-varying incidence angle change on the volute tongue which causes periodic ingestion of low-stagnation pressure fluid into the diffuser passages. This sets up a limit cycle, promoting the system-wide instability. With the instability mechanism determined, the pump is redesigned to remove the flow separation while maintaining performance at design conditions. Unsteady numerical simulations demonstrate improved efficiency and pressure recovery at low flow coefficients. A time accurate calculation also indicates stable operation at all relevant flow conditions. The paper resolves a long-standing pump stability problem and provides design guidelines for reliable and improved performance, important to the chemical processing and power generation industry

    Area Schedule Based Design of High-Pressure Recovery Radial Diffusion Systems

    Get PDF
    High-pressure ratio centrifugal compressors require advanced diffusion systems to achieve enhanced efficiencies set by future turbocharger applications. To address the shortcomings of the commonly used channel diffuser and airfoil cascade design perspectives, a streamtube based area schedule is adopted paying special attention to the diffuser entry region. It is shown that the diffusion in the semivaneless space, controlled chiefly by inlet flow angle and the vane suction side geometry, plays a key role in improving diffuser performance. Removing excess thickness from the suction side eliminates flow overspeed, increases effective diffusion length, and leads to higher pressure recovery at reduced stagnation pressure loss. The pressure side thickness distribution controls the channel area schedule. Thin leading edges (LEs) ensure smooth flow area transition into the channel and reduce the vane upstream influence, mitigating high-cycle fatigue related mechanical issues.ABB Turbo Systems A

    Characterization of Nonequilibrium Condensation of Supercritical Carbon Dioxide in a de Laval Nozzle

    Get PDF
    Carbon capture and storage could significantly reduce carbon dioxide (COâ‚‚) emissions. One of the major limitations of this technology is the energy penalty for the compression of COâ‚‚ to supercritical conditions. To reduce the power requirements, supercritical carbon dioxide compressors must operate near saturation where phase change effects are important. Nonequilibrium condensation can occur at the leading edge of the compressor, causing performance and stability issues. The characterization of the fluid at these conditions is vital to enable advanced compressor designs at enhanced efficiency levels but the analysis is challenging due to the lack of data on metastable fluid properties. In this paper, we assess the behavior and nucleation characteristics of high-pressure subcooled COâ‚‚ during the expansion in a de Laval nozzle. The assessment is conducted with numerical calculations and corroborated by experimental measurements. The Wilson line is determined via optical measurements in the range of 41-82 bar. The state of the metastable fluid is characterized through pressure and density measurements, with the latter obtained in a first-of-its-kind laser interferometry setup. The inlet conditions of the nozzle are moved close to the critical point to allow for reduced margins to condensation. The analysis suggests that direct extrapolation using the Span and Wagner equation of state (S-W EOS) model yields results within 2% of the experimental data. The results are applied to define inlet conditions for a supercritical carbon dioxide compressor. Full-scale compressor experiments demonstrate that the reduced inlet temperature can decrease the shaft power input by 16%

    Full-Scale Turbofan Demonstration of a Deployable Engine Air-Brake for Drag Management Applications

    Get PDF
    This paper presents the design and full-scale ground-test demonstration of an engine airbrake (EAB) nozzle that uses a deployable swirl vane mechanism to switch the operation of a turbofan's exhaust stream from thrust generation to drag generation during the approach and/or descent phase of flight. The EAB generates a swirling outflow from the turbofan exhaust nozzle, allowing an aircraft to generate equivalent drag in the form of thrust reduction at a fixed fan rotor speed. The drag generated by the swirling exhaust flow is sustained by the strong radial pressure gradient created by the EAB swirl vanes. Such drag-on-demand is an enabler to operational benefits such as slower, steeper, and/ or aeroacoustically cleaner flight on approach, addressing the aviation community's need for active and passive control of aeroacoustic noise sources and access to confined airports. Using NASA's technology readiness level (TRL) definitions, the EAB technology has been matured to a level of six, i.e., a fully functional prototype. The TRL-maturation effort involved design, fabrication, assembly, and ground-testing of the EAB's deployable mechanism on a full-scale, mixed-exhaust, medium-bypass-ratio business jet engine (Williams International FJ44-4A) operating at the upper end of typical approach throttle settings. The final prototype design satisfied a set of critical technology demonstration requirements that included (1) aerodynamic equivalent drag production equal to 15% of nominal thrust in a high-powered approach throttle setting (called dirty approach), (2) excess nozzle flow capacity and fuel burn reduction in the fully deployed configuration, (3) acceptable engine operability during dynamic deployment and stowing, (4) deployment time of 3-5 s, (5) stowing time under 0.5 s, and (6) packaging of the mechanism within a notional engine cowl. For a typical twin-jet aircraft application, a constantspeed, steep approach analysis suggests that the EAB drag could be used without additional external airframe drag to increase the conventional glideslope from 3 deg to 4.3 deg, with about 3 dB noise reduction at a fixed observer location.NASA Glenn Research Center (Contract No. NNX13CC78C

    Tip-Clearance Actuation With Magnetic Bearings for High-Speed Compressor Stall Control

    Get PDF
    Magnetic bearings are widely used as active suspension devices in rotating machinery, mainly for active vibration control purposes. The concept of active tip clearance control suggests a new application of magnetic bearings as servo-actuators to stabilize rotating stall in axial compressors. This paper presents a first-of-a-kind feasibility study of an active stall control experiment with a magnetic bearing servo-actuator in the NASA Glenn high-speed single-stage compressor test facility. Together with CFD and experimental data a two-dimensional, incompressible compressor stability model was used in a stochastic estimation and control analysis to determine the required magnetic bearing performance for compressor stall control. The resulting requirements introduced new challenges to the magnetic bearing actuator design. A magnetic bearing servo-actuator was designed which fulfilled the performance specifications. Control laws were then developed to stabilize the compressor shaft. In a second control loop, a constant gain controller was implemented to stabilize rotating stall. A detailed closed loop simulation at 100% corrected design speed resulted in a 2.3% reduction of stalling mass flow which is comparable to results obtained in the same compressor by Weigl et al. (1998) using unsteady air injection. The design and simulation results presented here establish the viability of magnetic bearings for stall control in aero-engine high-speed compressors. Furthermore the paper outlines a general design procedure to develop magnetic bearing servo-actuators for high-speed turbomachinery.United States. National Aeronautics and Space Administration (Grant NAG3-1457

    Origins and Structure of Spike-Type Rotating Stall

    Get PDF
    In this paper we describe the structures that produce a spiketype route to rotating stall and explain the physical mechanism for their formation. The descriptions and explanations are based on numerical simulations, complemented and corroborated by experiments. It is found that spikes are caused by a loss of pressure rise capability in the rotor tip region, due to flow separation resulting from high incidence. The separation gives rise to shedding of vorticity from the leading edge and the consequent formation of vortices that span between the suction surface and the casing. As seen in the rotor frame of reference, near the casing the vortex convects toward the pressure surface of the adjacent blade. The approach of the vortex to the adjacent blade triggers a separation on that blade so the structure propagates. The above sequence of events constitutes a spike. The simulations show shed vortices over a range of tip clearances including zero. The implication is that they are not part of the tip clearance vortex, in accord with recent experimental findings. Evidence is presented for the existence of these vortex structures immediately prior to spike-type stall and, more strongly, for their causal connection with spike-type stall inception. Data from several compressors are shown to reproduce the pressure and velocity signature of the spike-type stall inception seen in the simulations

    Origins and Structure of Spike-Type Rotating Stall

    Get PDF
    In this paper, we describe the structures that produce a spike-type route to rotating stall and explain the physical mechanism for their formation. The descriptions and explanations are based on numerical simulations, complemented and corroborated by experiments. It is found that spikes are caused by a separation at the leading edge due to high incidence. The separation gives rise to shedding of vorticity from the leading edge and the consequent formation of vortices that span between the suction surface and the casing. As seen in the rotor frame of reference, near the casing the vortex convects toward the pressure surface of the adjacent blade. The approach of the vortex to the adjacent blade triggers a separation on that blade so the structure propagates. The above sequence of events constitutes a spike. The computed structure of the spike is shown to be consistent with rotor leading edge pressure measurements from the casing of several compressors: the centre of the vortex is responsible for a pressure drop and the partially blocked passages associated with leading edge separations produce a pressure rise. The simulations show leading edge separation and shed vortices over a range of tip clearances including zero. The implication, in accord with recent experimental findings, is that they are not part of the tip clearance vortex. Although the computations always show high incidence to be the cause of the spike, the conditions that give rise to this incidence (e.g., blockage from a corner separation or the tip leakage jet from the adjacent blade) do depend on the details of the compressor

    Unsteady Flow and Whirl-Inducing Forces in Axial-Flow Compressors: Part I—Experiment

    Get PDF
    An experimental and theoretical investigation has been conducted to evaluate the effects seen in axial-flow compressors when the centerline of the rotor is displaced from the centerline of the static structure of the engine. This creates circumferentially nonuniform rotor-tip clearances, unsteady flow, and potentially increased clearances if the rotating and stationary parts come in contact. The result not only adversely affects compressor stall margin, pressure rise capability, and efficiency, but also generates an unsteady, destabilizing, aerodynamic force, called the Thomas/Alford force, which contributes significantly to rotor whirl instabilities in turbomachinery. Determining both the direction and magnitude of this force in compressors, relative to those in turbines, is especially important for the design of mechanically stable turbomachinery components. Part I of this two-part paper addresses these issues experimentally and Part II presents analyses from relevant computational models. Our results clearly show that the Thomas/Alford force can promote significant backward rotor whirl over much of the operating range of modern compressors, although some regions of zero and forward whirl were found near the design point. This is the first time that definitive measurements, coupled with compelling analyses, have been reported in the literature to resolve the long-standing disparity in findings concerning the direction and magnitude of whirl-inducing forces important in the design of modern axial-flow compressors
    corecore