44 research outputs found

    MicroRNA molecules as predictive biomarkers of adaptive responses to strength training and physical inactivity in haemodialysis patients

    Get PDF
    The miRNA-206 and miRNA-23a play an important role in muscle tissue hypertrophy, regeneration and atrophy. Both of these miRNAs have been highlighted as promising adaptation predictors; however, the available evidence on associations is inconclusive. Therefore, our aim was to assess the expression levels of these two miRNAs as predictors of change in muscle function during strength training and physical inactivity among dialysed patients. For this purpose, 46 haemodialysis patients were monitored for 12-weeks of either intradialytic strength training (EXG, n = 20) or physical inactivity during dialysis (CON, n = 26). In both groups of patients, we assessed the baseline expression levels of miRNA-23a and miRNA-206 and the isometric force generated during hip flexion (HF) contraction before and after the 12-week period. Among the EXG group, the expression of miRNA-206 predicted the change in HF (R2 = 0.63, p = 0.0005) much more strongly than the expression of miRNA-23a (R2 = 0.21, p = 0.027). Interestingly, baseline miRNA-23a (R2 = 0.30, p = 0.006) predicted the change in HF much more than miRNA-206 (p = ns) among the CON group. Our study indicates that the baseline expression of miRNA-206 could predict the response to strength training, while miRNA-23a could serve as a potential predictive marker of functional changes during physical inactivity in dialysis patients

    Platelet-Rich Plasma Therapy for Knee Joint Problems: Review of the Literature, Current Practice and Legal Perspectives in Korea

    Get PDF
    Platelet-rich plasma (PRP) is a concentrate extract of platelets from autologous blood, and represents a possible treatment option for the stimulation and acceleration of soft-tissue healing and regeneration in orthopedics. Currently, the availability of devices for outpatient preparation and delivery contributes to the increase in the clinical use of PRP therapy in practical setting of orthopedic fields. However, there is still paucity of scientific evidence in the literature to prove efficacy of PRP therapy for the treatment of ligament or tendon problems around the knee joint. Moreover, strong evidence from well-designed clinical trials to support the PRP therapy for osteoarthritis of the knee joint is yet scanty in the literature. Scientific studies need to be performed to assess clinical indications, efficacy, and safety of PRP, and this will require high powered randomized controlled trials. Nonetheless, some hospitals exaggeratedly advertise PRP procedures as the ultimate treatment and a novel technology with abundant scientific evidence for the treatment of knee problems. As a matter of fact, PRP protocols are currently approved only for use in clinical trials and research, and are not allowed for treatment purpose by any institutions in Korea. At present, clinical use of PRP therapy for ligament or tendon problems or osteoarthritis of knee joint is defined as illegal medical practice, regardless of whether it is performed as a sole procedure or as a part of prolotherapy, because the safety and validity are not yet approved by the Ministry of Health and Welfare and Health Insurance Review and Assessment Service. Practicing physicians should remember that injection of PRP to patients by imposing medical charge is still illegal as per the current medical law in Korea

    Characterization and Therapeutic Use of Extracellular Vesicles Derived from Platelets

    No full text
    Autologous blood products, such as platelet-rich plasma (PRP), are gaining increasing interest in different fields of regenerative medicine. Although growth factors, the main components of PRP, are thought to stimulate reparation processes, the exact mechanism of action and main effectors of PRP are not fully understood. Plasma contains a high amount of extracellular vesicles (EVs) produced by different cells, including anucleated platelets. Platelet-derived EVs (PL-EVs) are the most abundant type of EVs in circulation. Numerous advantages of PL-EVs, including their ability to be released locally, their ease of travel through the body, their low immunogenicity and tumourigenicity, the modulation of signal transduction as well as the ease with which they can be obtained, has attracted increased attention n. This review focuses briefly on the biological characteristics and isolation methods of PL-EVs, including exosomes derived from platelets (PL-EXOs), and their involvement in the pathology of diseases. Evidence that shows how PL-EVs can be used as a novel tool in medicine, particularly in therapeutic and regenerative medicine, is also discussed in this review

    Soluble and EV-Associated Diagnostic and Prognostic Biomarkers in Knee Osteoarthritis Pathology and Detection

    No full text
    Osteoarthritis (OA) is the most common degenerative disease of the connective tissue of the human musculoskeletal system. Despite its widespread prevalence, there are many limitations in its diagnosis and treatment. OA diagnosis currently relies on the presence of clinical symptoms, sometimes accompanied by changes in joint X-rays or MRIs. Biomarkers help not only to diagnose early disease progression but also to understand the process of OA in many ways. In this article, we briefly summarize information on articular joints and joint tissues, the pathogenesis of OA and review the literature about biomarkers in the field of OA, specifically inflammatory cytokines/chemokines, proteins, miRNA, and metabolic biomarkers found in the blood, synovial fluid and in extracellular vesicles

    Soluble and EV-Associated Diagnostic and Prognostic Biomarkers in Knee Osteoarthritis Pathology and Detection

    No full text
    Osteoarthritis (OA) is the most common degenerative disease of the connective tissue of the human musculoskeletal system. Despite its widespread prevalence, there are many limitations in its diagnosis and treatment. OA diagnosis currently relies on the presence of clinical symptoms, sometimes accompanied by changes in joint X-rays or MRIs. Biomarkers help not only to diagnose early disease progression but also to understand the process of OA in many ways. In this article, we briefly summarize information on articular joints and joint tissues, the pathogenesis of OA and review the literature about biomarkers in the field of OA, specifically inflammatory cytokines/chemokines, proteins, miRNA, and metabolic biomarkers found in the blood, synovial fluid and in extracellular vesicles

    Problems of the Contact Window Structure and Building Envelope

    No full text
    Different behavior of the construction materials indynamic boundary conditions causes deformations of thermalfield of the window structure detail in envelope structure.Numerical thermal field analysis verified by the experimentalmeasurement in experimental outdoor chambers is used forrecognize the real heat-air-moisture behavior in the variousstructures. Window sill of brick walls is one of the most criticalplaces in a connection of two envelope types objectively. If thereare the transparent and opaque parts present together, theconnection is much more complicated

    Influence of Kartogenin on Chondrogenic Differentiation of Human Bone Marrow-Derived MSCs in 2D Culture and in Co-Cultivation with OA Osteochondral Explant

    No full text
    Articular cartilage has limited capacity for natural regeneration and repair. In the present study, we evaluated kartogenin (KGN), a bioactive small heterocyclic molecule, for its effect on in vitro proliferation and chondrogenic differentiation of human bone marrow-derived mesenchymal stromal cells (hBMSCs) in monolayer culture and in co-culture models in vitro. OA osteochondral cylinders and hBMSCs were collected during total knee replacement. The effect of KGN on hBMSCs during 21 days of culture was monitored by real-time proliferation assay, immunofluorescence staining, histological assay, scanning electron microscopy (SEM) (imaging and multiplex enzyme-linked immunosorbent assay) ELISA assay. The rate of proliferation of hBMSCs was significantly increased by treatment with 10 µM KGN during nine days of culture. Histological and SEM analyses showed the ability of hBMSCs in the presence of KGN to colonize the surface of OA cartilage and to produce glycosaminoglycans and proteoglycans after 21 days of co-culture. KGN treated hBMSCs secreted higher concentrations of TIMPs and the secretion of pro-inflammatory molecules (MMP 13, TNF-α) were significantly suppressed in comparison with control without hBMSCs. Our preliminary results support the concept that 10 µM KGN enhances proliferation and chondrogenic differentiation of hBMSCs and suggest that KGN is a potential promoter for cell-based therapeutic application for cartilage regeneration

    Limited genetic diversity of Aerococcus viridans strains isolated from clinical and subclinical cases of bovine mastitis in Slovakia

    No full text
    The Aerococcus viridans isolates from bovine mastitis in Slovakia were isolated and characterized by classical microbiological and biochemical, and molecular techniques including IGS-PCR and rep-PCR, ARDRA and 16S rDNA gene sequencing. The substantial variability of antibiotic resistance patterns was observed. The majority of strains were resistant to beta-lactam antibiotics, the resistance to tetracycline was observed in 3 tested strains, resistance to lincomycin was found in 4 strains and practically all tested strains were sensitive to neomycin and ciprofloxacin. While variable at a phenotypic level, no significant genetic variability among A. viridans isolates was detected by molecular DNA based methods. The data obtained suggest that a few A. viridans strains spread among cow's population in Slovak farms

    Mesenchymal Stem Cells in the Treatment of Human Spinal Cord Injury: The Effect on Individual Values of pNF-H, GFAP, S100 Proteins and Selected Growth Factors, Cytokines and Chemokines

    No full text
    At present, there is no effective way to treat the consequences of spinal cord injury (SCI). SCI leads to the death of neural and glial cells and widespread neuroinflammation with persisting for several weeks after the injury. Mesenchymal stem cells (MSCs) therapy is one of the most promising approaches in the treatment of this injury. The aim of this study was to characterize the expression profile of multiple cytokines, chemokines, growth factors, and so-called neuromarkers in the serum of an SCI patient treated with autologous bone marrow-derived MSCs (BM-MSCs). SCI resulted in a significant increase in the levels of neuromarkers and proteins involved in the inflammatory process. BM-MSCs administration resulted in significant changes in the levels of neuromarkers (S100, GFAP, and pNF-H) as well as changes in the expression of proteins and growth factors involved in the inflammatory response following SCI in the serum of a patient with traumatic SCI. Our preliminary results encouraged that BM-MSCs with their neuroprotective and immunomodulatory effects could affect the repair process after injury
    corecore