10 research outputs found

    NEAT-FT: the European fiber link collaboration

    No full text
    The development of clocks based on optical transitions during the past three decades culminates in the availability of optical clocks with unprecedented stability and uncertainty . Simultaneously, increasing requirements for accurate time and frequency signals, e.g. for tests of fundamental physics or novel applications in relativistic geodesy, put forward new challenges. Typically, such applications rely on the comparison of two remote clocks. Thus, major challenges are how to synchronize these clocks over long distances or how to get the time or frequency signal of a clock to the location where it is required. It is generally agreed that optical fiber links are an excellent alternative to established satellite based distant clock comparison and synchronization techniques. A European joint research project called Network for European Accurate Time and Frequency Transfer (NEAT-FT) has been initiated in 2011 to lay the foundations for a novel approach to disseminate high-precision timing and ultrastable frequency signals by using existing fiber infrastructure. Since Europe has a large number of modern ultra-precise clocks, special emphasis is put on the development of new techniques for time transfer and phase-coherent comparison of remotely located optical clocks and the feasibility of a European fibre network connecting optical clocks in Europe. This talk highlights recent achievements and discusses some applications and prospects

    A closer look at protection concepts for DC systems

    No full text

    Structure, Synthesis, and Chemical Reactions of Fluorinated Cyclopropanes and Cyclopropenes

    No full text

    Epidemiology and outcomes of hospital-acquired bloodstream infections in intensive care unit patients: the EUROBACT-2 international cohort study

    No full text
    Purpose In the critically ill, hospital-acquired bloodstream infections (HA-BSI) are associated with significant mortality. Granular data are required for optimizing management, and developing guidelines and clinical trials. Methods We carried out a prospective international cohort study of adult patients (≥ 18 years of age) with HA-BSI treated in intensive care units (ICUs) between June 2019 and February 2021. Results 2600 patients from 333 ICUs in 52 countries were included. 78% HA-BSI were ICU-acquired. Median Sequential Organ Failure Assessment (SOFA) score was 8 [IQR 5; 11] at HA-BSI diagnosis. Most frequent sources of infection included pneumonia (26.7%) and intravascular catheters (26.4%). Most frequent pathogens were Gram-negative bacteria (59.0%), predominantly Klebsiella spp. (27.9%), Acinetobacter spp. (20.3%), Escherichia coli (15.8%), and Pseudomonas spp. (14.3%). Carbapenem resistance was present in 37.8%, 84.6%, 7.4%, and 33.2%, respectively. Difficult-to-treat resistance (DTR) was present in 23.5% and pan-drug resistance in 1.5%. Antimicrobial therapy was deemed adequate within 24 h for 51.5%. Antimicrobial resistance was associated with longer delays to adequate antimicrobial therapy. Source control was needed in 52.5% but not achieved in 18.2%. Mortality was 37.1%, and only 16.1% had been discharged alive from hospital by day-28. Conclusions HA-BSI was frequently caused by Gram-negative, carbapenem-resistant and DTR pathogens. Antimicrobial resistance led to delays in adequate antimicrobial therapy. Mortality was high, and at day-28 only a minority of the patients were discharged alive from the hospital. Prevention of antimicrobial resistance and focusing on adequate antimicrobial therapy and source control are important to optimize patient management and outcomes
    corecore