3 research outputs found

    A mathematical model for Chagas disease transmission with neighboring villages

    Get PDF
    Chagas disease has been the target of widespread control programs, primarily through residual insecticide treatments. However, in some regions like the Gran Chaco, these efforts have failed to sufficiently curb the disease. Vector reinfestation into homes and vector resistance to insecticides are possible causes of the control failure. This work proposes a mathematical model for the dynamics of Chagas disease in neighboring rural villages of the Gran Chaco region, incorporating human travel between the villages, passive vector migration, and insecticide resistance. Computational simulations across a wide variety of scenarios are presented. The simulations reveal that the effects of human travel and passive vector migration are secondary and unlikely to play a significant role in the overall dynamics, including the number of human infections. The numerical results also show that insecticide resistance causes a notable increase in infections and is an especially important source of reinfestation when spraying stops. The results suggest that control strategies related to migration and travel between the villages are unlikely to yield meaningful benefit and should instead focus on other reinfestation sources like domestic foci that survive insecticide spraying or sylvatic foci

    Facial grimace testing as an assay of neuropathic pain-related behavior in a mouse model of cervical spinal cord injury.

    Get PDF
    A major portion of individuals affected by traumatic spinal cord injury (SCI) experience one or more types of chronic neuropathic pain (NP), which is often intractable to currently available treatments. The availability of reliable behavioral assays in pre-clinical models of SCI-induced NP is therefore critical to assess the efficacy of new potential therapies. Commonly used assays to evaluate NP-related behavior in rodents, such as Hargreaves thermal and von Frey mechanical testing, rely on the withdrawal response to an evoked stimulus. However, other assays that test spontaneous/non-evoked NP-related behavior or supraspinal aspects of NP would be highly useful for a more comprehensive assessment of NP following SCI. The Mouse Grimace Scale (MGS) is a tool to assess spontaneous, supraspinal pain-like behaviors in mice; however, the assay has not been characterized in a mouse model of SCI-induced chronic NP, despite the critical importance of mouse genetics as an experimental tool. We found that beginning 2 weeks after cervical contusion, SCI mice exhibited increased facial grimace features compared to laminectomy-only control mice, and this grimace phenotype persisted to the chronic time point of 5 weeks post-injury. We also found a significant relationship between facial grimace score and the evoked forepaw withdrawal response in both the Hargreaves and von Frey tests at 5 weeks post-injury when both laminectomy-only and SCI mice were included in the analysis. However, within only the SCI group, there was no correlation between grimace score and Hargreaves or von Frey responses. These results indicate both that facial grimace analysis can be used as an assay of spontaneous NP-related behavior in the mouse model of SCI and that the information provided by the MGS may be different than that provided by evoked tests of sensory function

    A model for Chagas disease with controlled spraying

    No full text
    Chagas disease is a vector-borne parasitic disease that infects mammals, including humans, through much of Latin America. This work presents a mathematical model for the dynamics of domestic transmission in the form of four coupled nonlinear differential equations. The four equations model the number of domiciliary vectors, the number of infected domiciliary vectors, the number of infected humans, and the number of infected domestic animals. The main interest of this work lies in its study of the effects of insecticide spraying and of the recovery of vector populations with cessation of spraying. A novel aspect in the model is that yearly spraying, which is currently used to prevent transmission, is taken into account. The model\u27s predictions for a representative village are discussed. In particular, the model predicts that if pesticide use is discontinued, the vector population and the disease can return to their pre-spraying levels in approximately 5–8 years
    corecore