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Chagas disease has been the target of widespread control programs, primarily

through residual insecticide treatments. However, in some regions like the

Gran Chaco, these e�orts have failed to su�ciently curb the disease. Vector

reinfestation into homes and vector resistance to insecticides are possible

causes of the control failure. This work proposes a mathematical model for the

dynamics of Chagas disease in neighboring rural villages of the Gran Chaco

region, incorporating human travel between the villages, passive vector migration,

and insecticide resistance. Computational simulations across a wide variety of

scenarios are presented. The simulations reveal that the e�ects of human travel

and passive vector migration are secondary and unlikely to play a significant role

in the overall dynamics, including the number of human infections. The numerical

results also show that insecticide resistance causes a notable increase in infections

and is an especially important source of reinfestation when spraying stops. The

results suggest that control strategies related to migration and travel between

the villages are unlikely to yield meaningful benefit and should instead focus on

other reinfestation sources like domestic foci that survive insecticide spraying or

sylvatic foci.

KEYWORDS

Chagas disease, delay di�erential equations, mathematical model, insecticide resistance,

vector migration

1. Introduction

Trypanosoma cruzi is a parasitic hemoflagellate that infects mammals, including

humans, wherever the Triatominae vectors are found, between approximately 40◦ N and S

of the equator in the Americas [1]. Chagas disease (American trypanosomiasis), caused by T.

cruzi infection in humans, is responsible for disability and early death in approximately one-

third of those infected [2]. The WHO reports that approximately 8 million individuals are

currently infected with Chagas disease, an estimated 25 million people are potentially at risk

of infection, and more than 10,000 people die annually from the disease [3]. Chagas disease

is increasingly being detected in the US, Canada, and many European and Asian countries

due to human migration between Latin America and the rest of the world [4]. Therefore, it

is becoming a global threat to public health.

Chagas disease has been the target of widespread and largely successful control programs

over the past few decades [5]. Such efforts–prominently including the Southern Cone

Initiative, which was begun in 1991–have had a tremendous impact, more than halving the

number of infected individuals. However, the disease remains a baleful threat due to large
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number of sylvatic reservoir hosts found throughout Latin America

and the possibility of resurgence in places where incidence has

been reduced. In particular, the Gran Chaco, a region over 600,000

km2 in size located in southcentral South America, is of notable

concern. There, the major disease control strategies have failed, and

Chagas disease remains endemic, threatening the approximately

five million inhabitants [6–8]. For example, one rural village in

the region was recently surveyed, and over 80% of the adults were

found to be infected [9].

Chagas disease has historically been a problem associated with

rural regions of Latin America, largely due to the tendency of

its insect vectors to live in the crevices of homes made from

inexpensive and easily accessible materials such as mud, adobe,

straw, and palm thatch. The disease has spread in recent years as

people have moved from rural areas to urban locations within Latin

America and throughout the world [3, 10]. The estimated burden

of Chagas disease in the United States is greater than 300,000

individuals, with 30,000–45,000 cardiomyopathy cases and 63–315

congenital infections annually [11]. Los Angeles blood banks have

an estimated seroprevalence among all blood donors as high as

1 in 3,800 [12]. The enduring presence and recent diffusion of

Chagas disease is quite concerning as it is a chronic and potentially

life-threatening infection [13]. At present, there is no vaccine for

Chagas disease, and treatments with drugs such as benznidazole

and nifurtimox are long, have serious potential side effects, and

diminish in effectiveness with time since infection. As a result, the

primary method of disease control is prevention [3].

Trypanosoma cruzi infection can be due to exposure to infected

Triatominae feces, blood transfusion, organ donation, or congenital

transmission [10]. The subfamily Triatominae or kissing bugs are

large bloodsucking insects that predominately hide in the homes of

their host during the day and feed on blood at night [3]. Should

the Triatominae bite a mammal infected with T. cruzi, it may

become infected and spread the disease. The parasites are present

in the feces of the vectors and infection only occurs if the parasites

come in contact with the mucosa through the eyes, the mouth,

or enter through the nearby bite site [3, 10]. For this reason the

most important reservoirs for T. cruzi are insectivorous mammals

which can serve as hosts for T. cruzi [14]. Many methods of

inhibiting transmission to humans, such as blood screening, home

improvements, and bednets, are currently in use, with the primary

means of vector control being residual insecticide spraying [3].

Residual insecticide treatment of endemic areas has shown

tremendous success in most regions, but in some like the Gran

Chaco, they have failed to sufficiently curb the disease, and

the uneven success of current prevention methods in these

regions warrants further study. Of particular interest are vector

reinfestation into homes and vector resistance to insecticides,

both of which are important possible causes of control failure.

Reinfestation of vectors into homes is a major concern, because

even a small lingering population of vectors in a village that has

been treated with insecticides can quickly return to pre-spraying

levels of infestation; therefore, migration could contribute to rapid

population recovery and thus account for control failure in regions

like the Gran Chaco [6, 7]. Reinfestation is a particularly prominent

concern in the Gran Chaco due to a combination of political

instability causing unpredictable changes in control strategies and

economic instability causing widespread human migration [6, 7].

Along with these concerns, field work supports the idea that

vector movement is playing an important role in control failure;

recent research suggests that Triatoma infestans, the primary vector

in the Grand Chaco, from sylvatic populations and neighboring

townships are re-infesting villages in the Gran Chaco and that

prevention tactics are needed for effective vector control [15–18].

In addition, despite an initial assumption of the Southern Cone

Initiative that the vectors do not have sufficient genetic variability

to develop resistance, various sources have shown that populations

of T. infestans in the Gran Chaco and other areas are resistant to

the insecticides currently in use [6, 7, 19]. For example, in 2002,

vectors in four separate villages in Argentina were found to have

high resistance to the pyrethroid insecticides deltamethrin and,

β-cypermethrin [20]. Additionally, insecticide resistance has been

observed within the Gran Chaco region, which suggests that it

may be playing a role in the failure of control efforts there [19].

The possibility of insecticide resistance is especially problematic

because vector control plays such a key role in current disease

prevention efforts.

The purpose of this study is to analyze these potential sources

of reinfestation using a differential equations model. This work is

the latest in a series of works that have used Chagas disease models

to analyze the effectiveness of various control strategies [21–26].

The previous works have assumed that reinfestation occurs due

to a small population of vectors that avoid insecticide spraying.

In this study, we compare this cause of control failure with

vector reinfestation through migration by expanding the model to

simulate the spread of Chagas disease in a system of villages rather

than a single town. We then use this updated model to analyze

the impact of different control strategies with a focus on how they

interact with vector migration. We also consider the impact of

larger populations of residual vectors that survive insecticide use

due to resistance.

2. Materials and methods

The model in this work expands upon the one used in “A

Mathematical Model of Chagas Disease Dynamics in the Gran

Chaco Region” [26], which we update to more accurately reflect

the available research on T. infestans and T. cruzi. As in [26],

the model is specifically designed to analyze villages in the Gran

Chaco, and these villages are assumed to have sufficiently large

populations so that differential equations are appropriate for

modeling them. This assumption is consistent with field data, see

[9], where the average village size is 462 people. For each village,

we model the total domestic vectors, infected domestic vectors,

total peridomestic vectors, infected peridomestic vectors, infected

humans, susceptible humans, infected domestic animals that we

will refer to as dogs, and infected peridomestic mammals (goats and

pigs). We also consider chickens as a potential blood meal source,

but do not model their population since they are not susceptible

to T. cruzi infection. Furthermore, as this model considers a

system of villages, multiple sets of these eight equations coupled

by migration terms are used rather than a single set. Throughout,

parameters that may vary between villages are denoted with a j
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subscript, and those that are assumed to be uniform across villages

are not.

Let Vj = Vj(t) represent the total number of domestic vectors

in village j at time t, Vij = Vij (t) the number of infected domestic

vectors, Wj = Wj(t) the total number of peridomestic vectors,

Wij = Wij (t) the number of infected peridomestic vectors, Nij =

Nij (t) the number of infected humans, Nsj = Nsj (t) the number

of susceptible humans, Dij = Dij (t) the number of infected dogs,

Mij = Mij (t) the number of infected peridomestic mammals,

Nj(t) = Nsj (t) + Nij (t) the total number of humans, Dj(t) the

total number of dogs, Mj(t) the total number of mammals, and

Cj(t) the number of chickens. In this work, the total dog, mammal,

and chicken populations are not modeled, but rather obtained

from [27] and [28] and defined explicitly. However, infected dogs

and mammals are modeled as sub-populations of the known total

populations. We use the notation f+ = max(f , 0) and f− =

min(f , 0) throughout.

2.1. Total domestic vectors

First, we model the growth of domestic vectors by the using a

delayed logistic term:

dhj (t − τ )Vj(t − τ )

(

1−
Vj(t − τ )

KVj

)

+

, (1)

where the delay τ is the gestation time of the vectors, KVj is the

carrying capacity of the vectors in village j, and dhj (t− τ ) is the egg

hatching rate in village j at time t − τ . Since adult female vectors

lay eggs after having a complete blood-meal, the egg hatching rate

is dependent on the biting rate Bj(t − τ ), which is the average

number of bites each vector makes per day. In addition to the biting

rate, the egg hatching rate is naturally assumed to be dependent on

the number of eggs a female vector lays after a blood-meal φl, the

proportion of adult females in the population v, and the proportion

of eggs that hatch φh. Thus, the egg hatching rate is given by

dhj (t − τ ) = vφlφhBj(t − τ ). (2)

Since a larger blood supply results in more biting (up to a

maximum per day), the biting rate Bj(t) is dependent on the

domestic blood supply bsupj (t) of village j at the time when the

female lays eggs, and it is also dependent on the season [29]. In

order to accurately capture the seasonal dependence, we construct

a seasonal biting rate b(t) (defined in Table 3) based on data

from [28]. However, this function b(t) is obtained from data in a

setting with a particular known blood supply bsupknown (t) [defined in

equation (43)] and does not capture the blood meal dependence, so

we also use a Holling Type II response to obtain the final biting rate

Bj(t) = b(t)

(

β

bmax

)

(

bsupj (t)

bsupj (t)+ Ab(t)

)

, (3)

where bsupj (t) is the domestic blood supply in village j, β is the

maximum possible daily feedings of a vector, and bmax is the

maximum value of b(t). Ab is chosen such that

(

β

bmax

)(

bsupknown (t)

bsupknown (t)+ Ab(t)

)

= 1. (4)

This is done so that if the blood supply in village j matches the

conditions in [28] (that is, bsupj = bsupknown ), then B(t) = b(t) and

the biting rate agrees with the empirical results.

We now consider the domestic blood supply bsupj (t), which is

composed of total humans, dogs, and chickens. Since the vectors

prefer certain blood sources over others, each one is translated into

a number of humans, so that the unit of measurement is human

factors [28, 30]. More specifically, the human factors for a dog

and a chicken are represented by df and cf , respectively. Also, the

blood supply is dependent on the availability of humans, dogs, and

chickens in the domestic region in village j at time t, given by aNj (t),

aDhj (t), and aChj (t), respectively. These time-dependent values

represent the proportion of the respective populations available

for biting in the domestic region, which may vary due to various

factors, such as dogs sleeping outside or people being unavailable

for biting because of their protection (at night) when they are using

bednets [28]. Therefore, the total blood supply is given by

bsupj (t) = aNj (t)Nj(t)+ df aDhj (t)Dj(t)+ cf aChj (t)Cj(t), (5)

which can be thought of as the equivalent number of human factors

available for biting.

We now consider the deaths of vectors. Natural death is

modeled by

− dmVj(t), (6)

where dm is the natural death rate. We also assume that the vectors

die due to overpopulation, which is modeled by

dk

(

1−
Vj(t)

KVj

)

−

, (7)

where dk is the death rate due to the population being over the

carrying capacity. In addition, death can be caused by insecticide

spraying. We assume there is a sub-population of vectors Vresj

that does not die from spraying, being protected in cracks in the

walls or by insecticide resistance. Recent field surveys confirm that

domestic vectors that survive spraying continue to be a source of

reinfestation [18]. For simplicity, we assume that Vresj is constant

for a given village. Therefore, the term that models death due to

spraying is given by

− rj(t)
(

Vj(t)− Vresj

)

+
, (8)

where rj(t) is the mortality rate due to spraying of non-

resistant vectors.

As was done in [26], we assume the net movement into (or out

of) the domestic region from (or to) the peridomestic region of a

village is given by

ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

. (9)
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Here, ρ is a constant parameter with units vectors per day, and

the term inside the parentheses captures the density dependence

by comparing the ratios of the vector population to the carrying

capacity in the respective regions. We note that the movement of

vectors between the domestic and peridomestic region is still poorly

understood, and amore thorough analysis of this term can be found

in [26].

A novel aspect of our model is the migration of vectors

between villages. Vectors move between villages primarily in two

ways: passively via human movement and actively via flight [15].

However, even with villages within approximately 500 m of each

other there is sometimes no flight of vectors between them [15],

so we consider active transport negligible in our village system.

For passive migration, which occurs when vectors and their eggs

are carried by traveling individuals, we assume that the rate is

dependent on the number of vectors and humans present in the

domestic region of each village in the following way. We let αNj,k

be the daily rate of people traveling from village j to village k, and

use η to denote the average ratio of vectors that live in the luggage

or other travel items in the domicile. Then the number of people

traveling daily from village j to village k is given by αNj,k
Nj(t), and

on average, each person is carrying ηVj(t)/Nj(t) vectors. Thus, the

number of vectors per day passively transporting into (and out of)

village j, and from (and into) village k, is

pVk,j
Vk(t)− pVj,k

Vj(t), (10)

where, pVj,k
= ηαNj,k

.

Finally, the complete equation used to model domestic

vectors is

dVj

dt
= dhj (t − τ )Vj(t − τ )

(

1−
Vj(t − τ )

KVj

)

+

−dkVj(t)

(

1−
Vj(t)

KVj

)

−

−dmVj(t)− rj(t)
(

Vj(t)− Vresj

)

+
+ ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

+
∑

k6=j

(

pVk,j
Vk(t)− pVj,k

Vj(t)
)

. (11)

2.2. Infected domestic vectors

A domestic vector becomes infected by biting infected humans

and infected dogs [31]. Thus, the term that models the growth of

the infected domestic vector population is

Bj(t)
(

Vj(t)− Vij (t)
)

(

PNVaNj (t)Nij (t)+ PMVdf aDhj (t)Dij (t)

bsupj (t)

)

,

(12)

where PNV and PMV are the proportion of vectors that become

infected after taking a blood meal from infected humans and

mammals (including dogs). Note that Bj(t)
(

Vj(t)− Vij (t)
)

is the

daily number of bites by non-infected vectors and that the latter

half of (12) is the fraction of bites that cause infection. The vectors

do not pass T. cruzi to their young, so this is the only term for the

growth of the infected vector population [32].

The death rates for infected vectors are assumed to be

the same as those for all vectors with no preference for the

infected or susceptible populations, so the terms accounting for

mortality are the same as those for total domestic vectors but

multiplied appropriately by Vij/Vj. The transport rates between

populations of vectors are subject to the same assumption, and

they are correspondingly multiplied by the appropriate ratios of

infected vectors.

Thus, the complete equation is

dVij

dt
= Bj(t)

(

Vj(t)− Vij (t)
)

(

PNVaNj (t)Nij (t)+ PMVdf aDhj (t)Dij (t)

bsupj (t)

)

−dkVij (t)

(

1−
Vj(t)

KVj

)

−

− dmVij (t)

−rj(t)

(

1−
Vresj

Vj(t)

)

+

Vij (t)+ ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

+
∑

k6=j

(

pVk,j
Vik (t)− pVj,k

Vij (t)
)

. (13)

2.3. Total peridomestic vectors

Naturally, the dynamics of the peridomestic vectors are similar

to those of the domestic vectors; however, there are some minor

differences due to the different setting. First, the egg hatching rate

is updated to depend on the peridomestic blood supply, b̃supj (t),

which is given by

b̃supj (t) = df aDpj (t)Dj(t)+mf aMj (t)Mj(t)+ cf aCpj (t)Cj(t). (14)

Here, aDpj (t) is the peridomestic availability of dogs, aCpj (t) is the

peridomestic availability of chickens, aMj (t) is the availability of

mammals, andmf is themammal factor analagous to df and cf [28].

Thus, the peridomestic biting rate B̃j(t) is given by

B̃j(t) = b(t)

(

β

bmax

)

(

b̃supj (t)

b̃supj (t)+ Ab(t)

)

, (15)

and the peridomestic egg hatching rate is given by

d̃hj (t − τ ) = vφlφhB̃j(t − τ ). (16)

Second, we assume that luggage containing items such as

clothing is what harbors vectors for passive transport [15], so

as there is no luggage in the peridomestic region there is

correspondingly no term for passive transport (We relax this

assumption in Simulation 4 and consider a case with transport of

peridomestic vectors). Therefore, we have

dWj

dt
= d̃hj (t − τ )Wj(t − τ )

(

1−
Wj(t − τ )

KWj

)

+

−dkWj(t)

(

1−
Wj(t)

KWj

)

−
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−dmWj(t)− rj(t)
(

Wj(t)−Wresj

)

+

−ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

. (17)

2.4. Infected peridomestic vectors

The dynamics of infected peridomestic vectors are derived from

those of the total peridomestic vectors just as for the domestic

vectors, so the equation is given by

dWij

dt
= B̃j(t)

(

Wj(t)−Wij (t)
)

(18)

×

(

PMVaMj (t)mfMij (t)+ PMVdf aDpj (t)Dij (t)

b̃supj (t)

)

−dkWij (t)

(

1−
Wj(t)

KWj

)

−

− dmWij (t)

−rj(t)

(

1−
Wresj

Wj(t)

)

+

Wij (t)− ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

.

2.5. Susceptible humans

We now consider susceptible humans.We note that all children

of susceptible humans are born susceptible, and a certain fraction

PNN of children born to infected mothers are also born infected due

to congenital transmission with the rest being born susceptible [33–

35]. Also, due to the relatively long time it takes for Chagas disease

to cause death, the birth rate of infected mothers is assumed to be

the same as that of susceptible ones. Thus, using a logistic model,

the growth term is given by

GN

(

Nsj (t)+ (1− PNN)Nij (t)
)

(

1−
Nj(t)

KNj

)

+

, (19)

where GN is the daily growth rate of humans with unlimited

resources. For the death term, we use

− γNsNsj (t), (20)

where γNs is the per day death rate of susceptible humans.

Along with death, we consider the loss of susceptible humans

due to infection. The rate of infection is taken to be the product

of the number of bites per day by infected vectors and the

fraction of those bites that cause human infection, which yields the

following term:

− Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t). (21)

Finally, as we consider multiple villages, we include terms for

the movement of people between them. We assume this movement

depends on a per-person travel rate, so that the rate of people

entering and leaving village j (from and to village k) is given by

αNk,j
Nsk − αNj,k

Nsj , (22)

where αNj,k
is the daily rate of movement of people from village j

to k.

Thus, the complete equation is

dNsj

dt
= GN

(

Nsj (t)+ (1− PNN)Nij (t)
)

(

1−
Nj(t)

KNj

)

+

(23)

−Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)− γNsNsj (t)

+
∑

k6=j

(

αNk,j
Nsk − αNj,k

Nsj

)

.

2.6. Infected humans

The model for infected humans is similar to that of susceptible

ones. However, the birth term reflects that only infected mothers

can give birth to infected children and that only a certain percentage

of their children are born infected. Also, the susceptible humans

that become infected join the infected population, and the death

rate of infected humans is assumed to be higher. However, the travel

rates are assumed to be the same. Thus, the equation is

dNij

dt
= GNPNNNij (t)

(

1−
Nj(t)

KNj

)

+

+Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)

−γNiNij (t)+
∑

k6=j

(

αNk,j
Nik − αNj,k

Nij

)

. (24)

2.7. Infected dogs

We first consider the birth rate of infected dogs. To do this, we

consider the total population of dogs in village j, Dj(t), which we

assume is known. Then, assuming a growth rate of αj(t) for the total

dogs and that susceptible and infected dogs die at the same rate of

γD, we have D′
j(t) = αj(t)Dj(t) − γDDj(t). Finally, since Dj(t) is

known, and hence, D′
j(t) is also known, we also have αj(t) in terms

of known quantities:

αj(t) =
D′
j(t)

Dj(t)
+ γD. (25)

Therefore, as infected dogs are only born to infected mothers, the

birth term for infected dogs is given by

PMM

(

D′
j(t)

Dj(t)
+ γD

)

Dij (t), (26)

where PMM is the proportion of dogs infected by

vertical transmission.

In addition, the infected dog population could grow due to

infected vector bites on susceptible dogs. Therefore, the termwe use

is similar to that used tomodel infection of humans. However, since

dogs inhabit both domestic and peridomestic regions, there are

two separate terms to model infection using appropriate respective
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biting terms, blood supplies, populations, and availability values.

Thus, the terms used are

Bj(t)
PVMdf aDhj (t)

(

Dj(t)− Dij (t)
)

bsupj (t)
Vij (t) (27)

and

B̃j(t)
PVMdf aDpj (t)

(

Dj(t)− Dij (t)
)

b̃supj (t)
Wij (t) (28)

for the domestic and peridomestic regions, respectively.

Then, including the death term, the complete equation is given by

dDij

dt
= Bj(t)

PVMdf aDhj (t)
(

Dj(t)− Dij (t)
)

bsupj (t)
Vij (t) (29)

+B̃j(t)
PVMdf aDpj (t)

(

Dj(t)− Dij (t)
)

b̃supj (t)
Wij (t)

+PMM

(

D′
j(t)

Dj(t)
+ γD

)

Dij (t)− γDDij (t).

2.8. Infected mammals

Finally, we consider infected mammals. This equation is similar

to that for dogs, but it differs slightly in that mammals do not enter

the domestic region and thus there are no terms for infection from

domestic vectors. Therefore, we have

dMij

dt
= B̃j(t)

PVMmf aMj (t)
(

Mj(t)−Mij (t)
)

b̃supj (t)
Wij (t) (30)

+PMM

(

M′
j(t)

Mj(t)
+ γM

)

Mij (t)− γMMij (t).

2.9. The full model

Thus, the full model for village j is given by the following eight

differential equations and the initial conditions found in Table 2:

dVj

dt
= dhj (t − τ )Vj(t − τ )

(

1−
Vj(t − τ )

KVj

)

+

−dkVj(t)

(

1−
Vj(t)

KVj

)

−

−dmVj(t)− rj(t)
(

Vj(t)− Vresj

)

+

+ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

+
∑

k6=j

(

pVk,j
Vk(t)− pVj,k

Vj(t)
)

(31)

dVij

dt
= Bj(t)

(

Vj(t)− Vij (t)
)

(

PNVaNj (t)Nij (t)+ PMVdf aDhj (t)Dij (t)

bsupj (t)

)

−dkVij (t)

(

1−
Vj(t)

KVj

)

−

− dmVij (t)

−rj(t)

(

1−
Vresj

Vj(t)

)

+

Vij (t)+ ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

+
∑

k6=j

(

pVk,j
Vik (t)− pVj,k

Vij (t)
)

(32)

dWj

dt
= d̃hj (t − τ )Wj(t − τ )

(

1−
Wj(t − τ )

KWj

)

+

−dkWj(t)

(

1−
Wj(t)

KWj

)

−

−dmWj(t)− rj(t)
(

Wj(t)−Wresj

)

+

−ρ

(

Wj(t)

KWj

−
Vj(t)

KVj

)

(33)

dWij

dt
= B̃j(t)

(

Wj(t)−Wij (t)
)

×

(

PMVaMj (t)mfMij (t)+ PMVdf aDpj (t)Dij (t)

b̃supj (t)

)

−dkWij (t)

(

1−
Wj(t)

KWj

)

−

− dmWij (t)

−rj(t)

(

1−
Wresj

Wj(t)

)

+

Wij (t)− ρ

(

Wij (t)

KWj

−
Vij (t)

KVj

)

(34)

dNsj

dt
= GN

(

Nsj (t)+ (1− PNN)Nij (t)
)

(

1−
Nj(t)

KNj

)

+

−Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)− γNsNsj (t)

+
∑

k6=j

(

αNk,j
Nsk − αNj,k

Nsj

)

(35)

dNij

dt
= GNPNNNij (t)

(

1−
Nj(t)

KNj

)

+

+Bj(t)

(

PVNaNj (t)Nsj (t)

bsupj (t)

)

Vij (t)

−γNiNij (t)+
∑

k6=j

(

αNk,j
Nik − αNj,k

Nij

)

(36)

dDij

dt
= Bj(t)

PVMdf aDhj (t)
(

Dj(t)− Dij (t)
)

bsupj (t)
Vij (t) (37)

+B̃j(t)
PVMdf aDpj (t)

(

Dj(t)− Dij (t)
)

b̃supj (t)
Wij (t)

+PMM

(

D′
j(t)

Dj(t)
+ γD

)

Dij (t)− γDDij (t)
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dMij

dt
= B̃j(t)

PVMmf aMj (t)
(

Mj(t)−Mij (t)
)

b̃supj (t)
Wij (t)

+PMM

(

M′
j(t)

Mj(t)
+ γM

)

Mij (t)− γMMij (t). (38)

We now establish the baseline parameter values. We separate

these values into two categories: those considered to be biological

in nature and generally consistent in all villages and those that

depend on the structure of the particular collection of villages being

modeled. For example, we consider the vector gestation time and

the proportion of vector bites that result in a human being affected

to be the same in any village, whereas values such as the number of

houses in a village and the availability of dogs in the domestic region

clearly depend on the particular village in question. The parameter

values used are based upon existing data of Chagas disease and the

Gran Chaco region when available, but we note that these values

have a high degree of aleatory variability and epistemic uncertainty.

The constant biological parameters are found in Table 1. We note

that the human growth rate GN was chosen so that the total human

population grows at an approximate annual rate of 1.0% over the

30 years of simulation. This is consistent with recent population

data for Bolivia, Paraguay, and Argentina, the three countries that

contain the vast majority of the Gran Chaco region [46–48]. In

addition, the infection proportion PVN is unknown, so we choose

a value that agrees with the T. cruzi seroprevalence in humans

of 51.7% found in surveys in the Bolivian Chaco [9]. The village

dependent values are found in Table 2 with citations where the

value was chosen based on empirical data.

We now consider the time-dependent parameters. Based on

data from [28], the number of goats in village j is given by

Gj(t) = Hj

(

17.5− 2.5 cos

(

2π

365/2
(t − 45.75)

))

, (39)

where Hj is the number of houses in village j, which yields a

(smooth) function with a period of half a year. This function is

extended periodically. Similarly, the number of pigs is also derived

from [28] and it is taken to be yearly periodic. The (smooth)

function for the first year is given by

Pj(t) =































Hj, 0 ≤ t ≤ 181.5

Hj

(

1.75− 0.75 cos
(

(t − 181.5)π
))

, 181.5 < t ≤ 182.5

2.5Hj, 182.5 < t < 272.75

Hj

(

1.75+ 0.75 cos
(

(t − 272.75)π
))

, 272.75 ≤ t < 273.75

Hj, 273.75 ≤ t ≤ 365.

(40)

Combining these two functions, we have that

Mj(t) = Pj(t)+ Gj(t) (41)

TABLE 1 Constant parameter values used in the baseline simulation.

Parameter Definition Baseline value Units Source

v Fraction of vectors that are adult females 1073/60000 adult female vector
vector

[36]

φl Eggs laid per bite per fed adult female vector 20
egg/bite

adult female vector
[28, 29]

φh Fraction of eggs that successfully hatch 0.831 vector/egg [28, 29]

τ Vector gestation time 20 days [37]

β Max possible bites per vector per day 0.47 bites/vector/day [27, 29, 38]

PNV Per bite human to vector infection prop. 0.03 no units [39]

PVN Per bite vector to human infection prop. 0.00515 no units Est. [39]

PVM Per bite vector to mammal/dog infection prop. 0.02 no units Est. [39]

PMV Per bite mammal/dog to vector infection prop. 0.49 no units Est. [39]

PNN Per birth human to human infection prop. 0.073 no units Est. [35]

PMM Per birth mammal/dog to mammal/dog infection prop. 0.1 no units Est. [33, 40, 41]

df Human factor of one dog 2.45 humans/dog [27]

cf Human factor of one chicken 0.35 humans/chicken [27, 30]

mf Human factor of one mammal 2.45 humans/mammal Est. [27]

bmax Max value of b(t) 0.34 bites/day/vector Est. [28]

γNi Per day mortality rate of infected humans 0.00004163 1/day Est. [42, 43]

γD Per day mortality rate of dogs 1/1788.5 1/day This study

γM Per day mortality rate of mammals 1/1095 1/day This study

γNs Per day mortality rate of susceptible humans 1/27783.8 1/day Est. [42, 43]

GN Per day human growth rate 0.00019 1/day This study

dm Death rate (per day) of vectors 0.023677446 1/day Est. [29]

dk Death rate (per day) of vectors due to overpopulation 10 * dm 1/day This study
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TABLE 2 Village parameter values used in the baseline simulation.

Parameter Definition Baseline value Units Source

KVj Domestic vector carrying capacity in village j 1.301 * Hj vectors [44, 45]

KWj Peridomestic vector capacity in village j 36.26 * Hj vectors [44, 45]

KNj Per village human carrying capacity in village j 10 * Hj humans This study

ρ Factor for per day vector migration between the

peridomestic and domestic regions

1 vectors/day This study

Hj Total number of houses in village j 74 houses [28]

Cj Total number of chickens in village j 15 * Hj chickens [28]

Dj Total number of dogs in village j 2.9 * Hj dogs [27]

aDhj Domestic dog availability in village j 0.59 no units [30]

aDpj Peridomestic dog availability in village j 0.13 no units [30]

aNj Human availability in village j 1 no units This study

Vresj Min number of domestic vectors due to cracks and

resistance

0.05 * Hj vectors This study

Wresj Min number of peridomestic vectors due to cracks and

resistance

0.05 * Hj vectors This study

η Proportion of vectors in luggage of one person 0.1 1/person This study

αNj,k
Rate of human travel from village j to k 1/7 1/day This study

V0j (t), t ∈ [−τ , 0] Initial number of total domestic vectors in village j 50 vectors This study

Vi0j Initial number of infected domestic vectors in village j 30 vectors This study

W0j (t), t ∈ [−τ , 0] Initial number of total peridomestic vectors in village j 1800 vectors This study

Wi0j Initial number of total infected peridomestic vectors in

village j

1400 vectors This study

Ns0j Initial number of susceptible humans in village j 193 humans Est. [39]

Ni0j Initial number of infected humans in village j 207 humans Est. [39]

Di0j Initial number of infected dogs in village j 165 dogs This study

Mi0j Initial number of infected peridomestic mammals in

village j

1150 mammals This study

TABLE 3 Defining points of the piecewise-linear time dependent parameters.

Function t = 45.625 t = 136.875 t = 228.125 t = 319.375

(Fall) (Winter) (Spring) (Summer)

aCj (t) 0.38 0.83

aGj (t) 1 0

aPj (t) 0 1

b(t) 0.14 0.18 0.34 0.23

For availability, we first define the total chicken availability

aCj (t), goat availability aGj (t), and pig availability aPj (t), all of

which are obtained from data in [28]. We use continuous,

yearly-periodic, piecewise-linear functions defined by the values

listed in Table 3 and shown in Figure 1. We assume that

there are an equal number of chickens in the peridomestic

region and the domestic region, so we take aCpj (t) =

0.5 ∗ aCj (t) for the peridomestic chicken availability and

aChj (t) = 0.5 ∗ aCj (t) for the domestic availability. We

then take aMj (t) to be the weighted average of aPj (t) and

aGj (t), yielding

aMj (t) =
aPj (t)Pj(t)+ aGj (t)Gj(t)

Mj(t)
. (42)

For the biting term, we again use a yearly-periodic piecewise-

linear function as defined in Table 3. For the known blood supply,

we use

bsupknown (t) = cf aC(t)Cknown(t)+mf aM(t)Mknown(t), (43)
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FIGURE 1

Time-dependent parameters.

where aC(t) and aM are defined the same as aCj (t) and aMj , and

Cknown(t) and Mknown(t) are given by Hknown = 74. Both of these

functions are also derived from [28]. Finally, we define a yearly

periodic active spraying mortality function, r(t), with the first year

given by

r(t) =















0, 0 ≤ t < t1
(

e−λ(t−t1)
2
− e−1/2

)

r̄max, t1 ≤ t ≤ t2

0, t2 < t ≤ 365

(44)

with t1 = 212.5, t2 = 303.75, and

λ =
1

2(91.25)2
, r̄max =

1

1− e−1/2

as defined in [25]. This corresponds to spraying at t1 with residual

effects that diminish until disappearing at t2. We take rj(t) = r(t)

in spraying years for village j and rj(t) = 0 otherwise. The time-

dependent parameters, with the exception of the active spraying

mortality function, are shown over the course of 1 year in Figure 1.
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FIGURE 2

Baseline simulation: the populations of two identical villages with baseline parameters, insecticide spraying only in village 1, and no travel between

them.
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FIGURE 3

Neighboring villages with human travel and vector migration: the populations of two neighboring villages with human travel and vector transport

between them and insecticide spraying only in village 1.
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FIGURE 4

Neighboring villages with passive vector migration: the populations of two neighboring villages with vector transport between them and insecticide

spraying only in village 1.
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3. Results

We first establish a baseline simulation of two identical villages

with the default parameter values. Insecticide spraying occurs

in village 1 once per year for 10 consecutive years, there is no

insecticide spraying in village 2, and there is no travel or interaction

between the two villages. We then compare this simulation to

several studies where village 1 is connected through travel with

village 2, which can serve as a source of reinfestation. All numerical

solutions were obtained using the NDSOLVE numerical differential

equations solver in Wolfram Mathematica. Graphs were also

produced in Wolfram Mathematica.

3.1. Simulation 0: baseline

For the baseline case with resistant vectors, the simulation is

run for 30 years, during which insecticide spraying in village 1

occurs from year 11 to year 20. This is done so that the populations

can reach steady oscillations before spraying begins and so that the

behavior of the populations before, during, and after insecticide use

can be analyzed. The results of this baseline simulation may be seen

in Figure 2.

Before spraying begins, all the non-human populations

demonstrate almost steady oscillations. These oscillations continue

for the full 30 years in village 2. In village 1, after spraying starts,

the vector populations quickly reach new smaller steady oscillations

while the infected populations decrease. Once insecticide use

stops, the non-human populations rapidly return to the same

oscillating patterns that they demonstrated before it began, and

the number of infected humans begins to increase again. This is

largely in line with the qualitative results found in the baseline

simulations in [26], although there is a more noticeable decrease

in the infected populations in the current work as a result of the

updated parameters.

3.2. Simulation 1: two neighboring villages
with travel and vector migration

In this section, we simulate the populations of two villages that

are connected by human travel, including the passive transport

of vectors. We use the baseline parameters in both villages and

include insecticide spraying from year 11 to year 20 only in village 1.

This scenario investigates how isolated rural villages with different

control measures might affect each other, and in particular, the role

village 2 might play as a reinfestation source for village 1. Here

we simulate the case where travel between the villages is common,

with the average person traveling to the other village once per week

(αN1,2 = αN2,1 = 1/7). Additionally, we specify that 10% of the

vectors live in luggage or other travel items in the homes. The

results are shown in Figure 3.

We see that during the spraying years, the domestic vector

populations in village 1 and village 2 are higher and lower,

respectively, as compared to the baseline case. These changes reflect

the mixing of the vector populations in the two villages due to the

passive transport of vectors. More strikingly, there is a complete

FIGURE 5

Neighboring villages with variable levels of vector migration: the

numbers of infected humans after 30 years in two neighboring

villages as a function of the travel parameters. The value of

PV1,2 = PV2,1 = ηαN1,2
varies from η = 1% and αN1,2

= 1/year on the

low end to η = 10% and αN1,2
= 1/(10 days) on the high end.

mixing of the human populations between the villages so that they

have the same number of infected humans despite the difference

in control measures. While the travel between the villages does

increase the number of human infections in village 1, it is important

to note that the total number of human infections in the two villages

after 30 years is identical to the baseline case. That is, the additional

infections in village 1 are offset by fewer infections in village 2.

Thus, the movement of infected humans and vectors from village

2 to village 1 spreads the disease burden between the villages but

does not increase the total number of infected humans.

It is not clear from this simulation to what extent the change in

the infected human populations is a result of the humans traveling

vs. the vectors being transported. To isolate the effects, we ran a

similar simulation with the same level of human travel but with

no vector transport. The results for the human populations were

identical to those seen in Figure 3 while the rest of the populations

had dynamics similar to the baseline case. We see that the transport

of vectors has little effect on the number of infected humans when

the human populations are mixing at such a high rate. These

results were further confirmed in scenarios with much lower rates

of human travel. For example, when humans travel once per year

between the villages, it takes about 22 years for the two human

populations to fully mix, but the overall number of infections

remains the same. And, removing vector transport in this case

also has no effect on the total number of human infections in

either village.

Overall, we see that vector migration is not a significant source

of reinfestation in this scenario and that travel redistributes the

number of human infections, but does not increase them. The

human travel in this scenario is similar to migration as people travel

to and stay in the other village. As such, the eventual complete

mixing of the populations is likely unrealistic, potentially obscures

the differences between the two villages, and does not increase

the total number of human infections. Thus, to further investigate

the potential effects of vector migration, we will consider in

Simulations 2–7 human travel that passively transports the vectors

while the humans themselves do not move to the new village. These

Frontiers in AppliedMathematics and Statistics 13 frontiersin.org

https://doi.org/10.3389/fams.2023.1225137
https://www.frontiersin.org/journals/applied-mathematics-and-statistics
https://www.frontiersin.org


Co�eld et al. 10.3389/fams.2023.1225137

FIGURE 6

Neighboring villages with domestic and peridomestic vector migration: the populations of two neighboring villages with domestic and peridomestic

vector transport between them and insecticide spraying only in village 1.
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simulations represent scenarios where humans transport objects

containing vectors but do not stay in the other village.

3.3. Simulation 2: two neighboring villages
with vector migration

In this section, we simulate the populations of two villages with

the same parameters and insecticide spraying as in Simulation 1,

but with the travel terms removed from the human equations. That

is, we consider the baseline simulation with the addition of passive

vector migration but not human travel. The results are shown in

Figure 4 where we see that, except for infected humans, all the

population dynamics are similar to those in Simulation 1 (Figure 3).

Because we have removed human population mixing, the

differences in the number of human infections are attributable

solely to the passive transport of vectors. As in Simulation 1, we

see more vectors in village 1 during spraying years as compared to

the baseline case. These additional vectors in village 1 that come

from village 2 do result in five more infected humans in village 1

after 30 years as compared to the baseline. However, there are six

fewer infected humans in village 2 in this scenario. So while the

disease burden has slightly shifted from village 2 to village 1, the

overall effect is small and the number of human infections across

both villages remains nearly constant. We see that the transport of

vectors does not have a significant impact on human infections in

this scenario.

3.4. Simulation 3: two neighboring villages
with variable travel parameters

We further investigate the effect of the travel parameters in

this section by considering the number of infected humans in both

villages after 30 years as a function of PV1,2 = PV2,1 = ηαN1,2 . We

recall that αNj,k
is the daily travel rate of humans from village j to

village k and η is the average ratio of vectors that live in the luggage

or other travel items. As in Simulation 2, to isolate the effect of

vectormigration, the humans transport the vectors between villages

but do not stay in the other village. All other parameters are held

at the baseline values in both villages, with insecticide spraying in

village 1, but not in village 2. The results are shown in Figure 5.

Overall, we see that vector migration has a relatively small effect

on the infected human populations across a broad range of travel

scenarios. Small changes in the travel parameters have negligible

effects on the infected human populations and even a change from

no travel to high levels of travel and vector transport results in

only a handful of additional infections in village 1 after 30 years.

Furthermore, any increase in human infections in village 1 is offset

by a similar decrease in infections in village 2.

3.5. Simulations 4–5: peridomestic vector
migration and other travel scenarios

Next we consider a simulation where vectors may be passively

transported from the peridomestic regions of a village in addition

to being transported from the homes. In this scenario, vectors

may be hiding in materials (e.g., straw, hay, or animal feed) that

are transported from the peridomestic region in one village to

the peridomestic region in another during agricultural activities.

To accomplish this in the model, we modify the equations for

the peridomestic vector equations to include transport terms that

are analogous to the transport terms in the domestic vector

equations. The travel parameters are set to the same level as those in

Simulation 2, while all other parameters are at their baseline values

and insecticide spraying occurs only in village 1. As in Simulations

2–3, the humans transfer terms are removed from the equations,

though the humans still transport the vectors. The results are shown

in Figure 6.

As expected, we now see a mixing of the peridomestic

vectors, just as we saw with the domestic vectors in Figures 3, 4.

Additionally, we see differences in the infected dog and infected

mammals populations as compared to those in Figures 3, 4, where

there was no peridomestic vector transport. The decline and

rebound of the infected human population is qualitatively similar to

those in Figure 4, though the rebound after spraying ceases is more

pronounced. After 30 years, the number of people infected in village

1 is about nine higher than the baseline case and four higher than

Simulation 2, the case with only domestic vector transport. Notably,

the number of infected humans in village 2 does not decline to

offset the increase in village 1, but rather stays about the same as in

Simulation 2. Nevertheless, the total infected humans across both

villages is only four higher than the baseline case.

We ran additional simulations to see if other differences

between the villages might affect the role that vector migration

plays. We first considered the size of village 2, allowing village 1 to

be connected to a smaller or larger village by varying the number

of houses in village 2 from 40 to 145. We then considered the

number of infected humans after 30 years using different rates of

domestic vector migration. We did not include peridomestic vector

migration or the transfer of humans between the populations. All

other parameters are held at the baseline values in both villages,

with insecticide spraying only in village 1.

FIGURE 7

Neighboring villages with variable number of houses in village 2: the

number of infected humans after 30 years in village 1 as a function

of the number of houses in village 2 with vector migration between

them.
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FIGURE 8

Village 1 with no infected animals or vectors: the populations of village 1, with and without travel to village 2, when only humans are initially infected.
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FIGURE 9

Vector migration to a disease-free village: the populations of two neighboring villages, one which is initially infection-free, with low levels of vector

migration between them and no insecticide spraying.
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When vector migration is low (αN1,2 = αN2,1 = 1/365 and

η = 0.01), the number of infected humans in village 1 is essentially

independent of the number of houses in village 2, varying by less

than a single person over the whole range of house values in village

2. We then increased the travel parameters to their values from

Simulation 2, see Figure 7. In this case, the number of humans

infected after 30 years increases by about thirty people over the

whole range of house values in village 2. This suggests that the size

of the neighboring village with no insecticide spraying may be a

significant factor in determining the effects of vector migration in

spreading the disease.

Finally, we ran a similar simulation where we allowed the use

of bed nets in village 2 to vary from 0% to 100% effectiveness. In

both high and low vector migration scenarios, the use of bed nets in

village 2 had no meaningful effect on the number of infected people

in village 1. Overall, we see under a variety of circumstances that

vector migration plays only a minor role in the spread of infection,

except when there is substantial travel to a nearby larger village.

3.6. Simulations 6–7: low infection
scenarios

In the preceding scenarios where infected populations are

already established, travel and vector migration has had only a

secondary or marginal effect on the dynamics. Accordingly, in this

section we consider scenarios where infections in village 1 are very

low so that travel can play a potentially larger role in reintroducing

infected vectors.

First, we modify Simulation 2 so that initially in village 1,

there are no infected animals or vectors, only infected humans.

We modify the corresponding susceptible populations so that

the total populations are initially the same and leave the initial

human populations, infected and susceptible, as in the baseline

case. All other parameters are set to their baseline values, the travel

parameters are as in Simulation 2, and insecticide spraying occurs

only village 1. The results are shown in Figure 8 where they are

contrasted with an otherwise identical scenario that involves no

travel between the two villages.

We see that in this extreme scenario, the reinfestation of village

1 caused by the transport of vectors from village 2 does increase the

number of infected humans above the level of infection that would

occur without the travel between the villages. However, we see that

in both cases the other infected populations rebound within a few

years and the vector migration from village 2 results in fewer than

seven additional human infections at the 30 year mark.

Next, wemodify the above scenario so that there are no infected

animals or humans initially in village 1 and adjust the susceptible

populations accordingly to maintain the same total values at time 0.

The travel parameters are set much lower to αN1,2 = αN2,1 = 1/365

and η = 0.01. Also, notably we do not include insecticide spraying

in either village. The results are shown in Figure 9.

As expected, the introduction of infected vectors from village

2 leads to an eventual explosion of infection throughout all

populations in village 1. The infected vector populations reach

steady levels within about 5 years and the dogs and mammals reach

steady levels soon thereafter. Even though the travel between the

villages is very low, within 30 years, around 20% of the humans

in village 1 are infected. However, we note that if travel with

village 2 is entirely removed from this last scenario and instead

we introduce a single infected vector in the domicile at time 0,

we get nearly identical dynamics and a slightly higher number of

infected humans after 30 years. It is clear that once the infection is

introduced from any source, it is the local dynamics in the village

that drive the further infection in the village and not the ongoing

reinfestation of vectors through transport.

3.7. Simulations 8–9: resistance

Finally, we look at the sensitivity of the baseline simulation to

the number of resistant vectors in the village. Figure 10 depicts the

number of infected humans after 30 years in a single, unconnected

village as a function of the number of resistant vectors Vres =

Wres. All other parameters are set to their baseline values and

insecticide spraying occurs from year 11 to year 20, as in the

baseline simulation.

We see that the first resistant vector has a substantial impact on

human infections, leading to 16more infections after 30 years. And,

as expected, more resistant vectors leads to more infected humans,

though at a decreasing rate. Figure 11 shows all the populations in

the village in the extreme cases of 0, 1, and 40 resistant vectors.

When there are no resistant vectors, the total number of vectors

approaches zero during spraying years and does not recover for at

least 5 years after spraying. However, with only a single resistant

vector, the vector populations are able to rebound quickly to pre-

spraying levels with 1–2 years. Additional resistant vectors lead

to a quicker rebound of vector populations, but not significantly.

Indeed, the presence of any resistant vectors allows the vector

populations to rebound quickly.

Figure 11 also shows increased human infections with Vres =

40 as compared to Vres = 1, but this is due almost entirely to the

FIGURE 10

Resistant vectors in a single village: the number of infected humans

in a single village after 30 years as a function of the number of

resistant vectors Vres = Wres. All other parameters are set to their

baseline values.
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FIGURE 11

Resistant vectors in a single village: the populations in a village in di�erent cases for the number of resistant vectors Vres = Wres.
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sustained higher level of vectors during the spraying years, and not

due to a quicker rebound of vector populations.

4. Discussion

In this work, we expand existing Chagas disease models

by including novel travel and transport terms, allowing for the

investigation of potentially significant infection dynamics due

to travel and the exploration of relevant control strategies. In

particular, the simulations seek to analyze the effects of travel and

vector migration between two rural villages, one with insecticide

spraying and the other with lax control methods and corresponding

higher infection levels. However, these simulations suggest that

human travel and the passive transport of vectors is unlikely to play

a significant role in Chagas disease dynamics in rural villages.

Simulations 1 and 2 demonstrate that travel has only marginal

effects on the total number of infected humans even when there

is weekly travel between the villages. Simulation 3 further shows

that the total number of human infections changes very little over a

wide range of travel and vector migration parameters. Additionally,

allowing for peridomestic vector migration does further increase

the number of infected humans after 30 years in the village with

spraying, but the increase remains below 3% and the net increase in

both villages is under 2%. If, however, the village with no insecticide

spraying is much larger than the one with spraying, and there is

substantial travel between the two, then the village with spraying

can see a marked increase in humans infections after 30 years as

compared to the case with no travel. Otherwise, we see that the

effects on human infections of travel and vector migration between

villages are likely secondary across a wide range of scenarios.

Simulation 6 shows that travel and vector transport could play a

role in reintroducing infected vectors into a village with no infected

animals or vectors, though this scenario is unlikely. Nevertheless,

and most importantly, it is not the ongoing travel that causes

an eventual spike in infections. Rather, it is the introduction of

any infection, in a vector or otherwise, that eventually leads to

elevated infection levels in all populations, as seen in Simulation

7. Ultimately, the most significant role of travel is in introducing

T. cruzi into an infection-free village. But once introduced, travel

becomes relatively insignificant and local dynamics dominate.

Given the nature of travel between villages and the endemic nature

of Chagas disease, it is unlikely that control strategies related to

travel will yield meaningful benefit.

We also considered the effects of insecticide resistance on the

disease dynamics. Simulations 8 and 9 show that any insecticide

resistance, even a single vector, can notably increase the number of

human infections over 30 years by allowing the vector population

to quickly rebound to pre-spraying levels once insecticide spraying

ceases. Additionally, a large number of resistant vectors can further

increase human infections by keeping vector numbers relatively

high even during times of insecticide spraying.

Overall, these simulations suggest that human travel and

passive vector migration between rural villages are not significant

sources of reinfestation in the Gran Chaco. Control measures

should instead focus on other reinfestation sources like sylvatic

foci or domestic foci that survive insecticide spraying. A possible,

unlikely exception would be the case when travel or migration

is from areas where Chagas disease is endemic to areas where it

is not, for example, from rural communities to urban ones [49].

Such a scenario could be considered in future work but would

require significant modeling changes as the model here specifically

considers travel between rural villages, which have quite different

transmission dynamics than urban settings.
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