658 research outputs found

    The Courts\u27 Responsibility for Prison Reform

    Get PDF

    Due Process in the Prison: A Third Form

    Get PDF

    Comment

    Get PDF

    Economic evaluation of point-of-care testing in the remote primary health care setting of Australia’s Northern Territory

    Get PDF
    Aim: To determine the cost-effectiveness of utilizing point-of-care testing (POCT) on the Abbott i-STAT device as a support tool to aid decisions regarding the emergency medical retrievals of patients at remote health centers in the Northern Territory (NT) of Australia. Methods: A decision analytic simulation model-based economic evaluation was conducted using data from patients presenting with three common acute conditions (chest pain, chronic renal failure due to missed dialysis session(s), and acute diarrhea) at six remote NT health centers from July to December 2015. The specific outcomes measured in this study were the number of unnecessary emergency medical retrieval prevented through POCT. Cost savings through prevented unnecessary medical retrievals for each presentation type were then determined and extrapolated to give per annum NT-wide estimates. Results: POCT prevented 60 unnecessary medical evacuations from a total of 200 patient cases meeting the selection criteria (48/147 for chest pain, 10/28 for missed dialysis, and 2/25 for acute diarrhea). The associated cost savings were AUD 4,674,4,674, 8,034, and 786perpatienttranslatingtoNT−widesavingsofAUD786 per patient translating to NT-wide savings of AUD 13.72 million, 6.45million,and6.45 million, and 1.57 million per annum (AUD $21.75 million in total) for chest pain, missed dialysis, and acute diarrhea presentations, respectively. Conclusion: This study demonstrated that POCT when used to aid decision making for acutely ill patients delivered significant cost savings for the NT health care system by preventing unnecessary emergency medical retrievals.Brooke A Spaeth, Billingsley Kaambwa, Mark DS Shephard, Rodney Omon

    A Longitudinal Study of the Reliability of Acupuncture Deqi Sensations in Knee Osteoarthritis

    Get PDF
    Deqi is one of the core concepts in acupuncture theory and encompasses a range of sensations. In this study, we used the MGH Acupuncture Sensation Scale (MASS) to measure and assess the reliability of the sensations evoked by acupuncture needle stimulation in a longitudinal clinical trial on knee osteoarthritis (OA) patients. The Knee injury and Osteoarthritis Outcome Score (KOOS) was used as the clinical outcome. Thirty OA patients were randomized into one of three groups (high dose, low dose, and sham acupuncture) for 4 weeks. We found that, compared with sham acupuncture, real acupuncture (combining high and low doses) produced significant improvement in knee pain (P = .025) and function in sport (P = .049). Intraclass correlation analysis showed that patients reliably rated 11 of the 12 acupuncture sensations listed on the MASS and that heaviness was rated most consistently. Overall perceived sensation (MASS Index) (P = .014), ratings of soreness (P = .002), and aching (P = .002) differed significantly across acupuncture groups. Compared to sham acupuncture, real acupuncture reliably evoked stronger deqi sensations and led to better clinical outcomes when measured in a chronic pain population. Our findings highlight the MASS as a useful tool for measuring deqi in acupuncture research

    Developing a Parameterization Approach for Soil Erodibility for the Rangeland Hydrology and Erosion Model (RHEM)

    Get PDF
    Soil erodibility is a key factor for estimating soil erosion using physically based models. In this study, a new parameterization approach for estimating erodibility was developed for the Rangeland Hydrology and Erosion Model (RHEM). The approach uses empirical equations that were developed by applying piecewise regression analysis to predict the differences of erodibility before and after disturbance (i.e., wildfire, prescribed fire, and tree encroachment) and across a wide range of soil textures as a function of vegetation cover and surface slope angle. The approach combines rain splash, sheet flow, and concentrated flow erodibilities into a single parameter for modeling erodibility in most cases. We evaluated the new approach for sites representing different degrees of disturbance associated with burning and tree encroachment. Our results show that the new erodibility approach in RHEM predicts erosion at the plot scale with a satisfactory range of error in all cases. The new approach extends the applications of RHEM to a greater scope of landscapes and soil texture
    • …
    corecore