22 research outputs found

    Are depressive symptoms linked to a reduced pupillary response to novel positive information?:An eye tracking proof-of-concept study

    Get PDF
    Introduction:Depressive symptoms have been linked to difficulties in revising established negative beliefs in response to novel positive information. Recent predictive processing accounts have suggested that this bias in belief updating may be related to a blunted processing of positive prediction errors at the neural level. In this proof-of-concept study, pupil dilation in response to unexpected positive emotional information was examined as a psychophysiological marker of an attenuated processing of positive prediction errors associated with depressive symptoms.Methods: Participants (N = 34) completed a modified version of the emotional Bias Against Disconfirmatory Evidence (BADE) task in which scenarios initially suggest negative interpretations that are later either confirmed or disconfirmed by additional information. Pupil dilation in response to the confirmatory and disconfirmatory information was recorded. Results: Behavioral results showed that depressive symptoms were related to difficulties in revising negative interpretations despite disconfirmatory positive information. The eye tracking results pointed to a reduced pupil response to unexpected positive information among people with elevated depressive symptoms. Discussion: Altogether, the present study demonstrates that the adapted emotional BADE task can be appropriate for examining psychophysiological aspects such as changes in pupil size along with behavioral responses. Furthermore, the results suggest that depression may be characterized by deviations in both behavioral (i.e., reduced updating of negative beliefs) and psychophysiological (i.e., decreased pupil dilation) responses to unexpected positive information. Future work should focus on a larger sample including clinically depressed patients to further explore these findings.</p

    Cerebellar Modules and Their Role as Operational Cerebellar Processing Units

    Get PDF
    The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form

    Passive Q-switching and mode-locking for the generation of nanosecond to femtosecond pulses

    Full text link
    corecore