10 research outputs found

    Meso-Scale Burner Using Combustion Inside Porous Inert Media

    No full text

    Six-wafer combustion system for a silicon micro gas turbine engine

    No full text
    As part of a program to develop a micro gas turbine engine capable of producing 10-50 W of electrical power in a package less than one cubic centimeter in volume, we present the design, fabrication, packaging, and experimental test results for the 6-wafer combustion system for a silicon microengine. Comprising the main nonrotating functional components of the engine, the device described herein measures 2.1 cm � 2.1 cm � 0.38 cm and is largely fabricated by deep reactive ion etching through a total thickness of 3800 ?m. Complete with a set of fuel plenums, pressure ports, fuel injectors, igniters, fluidic interconnects, and compressor and turbine static airfoils, this structure is the first demonstration of the complete hot flow path of a multilevel micro gas turbine engine. The 0.195 cm3 combustion chamber is shown to sustain a stable hydrogen flame over a range of operating mass flows and fuel-air mixture ratios and to produce exit gas temperatures in excess of 1600 K. It also serves as the first experimental demonstration of stable hydrocarbon microcombustion within the structural constraints of silicon. Combined with longevity tests at elevated temperatures for tens of hours, these results demonstrate the viability of a silicon-based combustion system for micro heat engine applications

    Combined Numerical and Experimental Investigation of a Hobby-Scale Pulsejet

    No full text
    corecore