30 research outputs found

    Photocatalytic proton reduction by a computationally identified, molecular hydrogen-bonded framework

    Get PDF
    We show that a hydrogen-bonded framework, TBAP-Ξ±, with extended Ο€-stacked pyrene columns has a sacrificial photocatalytic hydrogen production rate of up to 3108 ΞΌmol g^{βˆ’1} h^{βˆ’1}. This is the highest activity reported for a molecular organic crystal. By comparison, a chemically-identical but amorphous sample of TBAP was 20–200 times less active, depending on the reaction conditions, showing unambiguously that crystal packing in molecular crystals can dictate photocatalytic activity. Crystal structure prediction (CSP) was used to predict the solid-state structure of TBAP and other functionalised, conformationally-flexible pyrene derivatives. Specifically, we show that energy–structure–function (ESF) maps can be used to identify molecules such as TBAP that are likely to form extended Ο€-stacked columns in the solid state. This opens up a methodology for the a priori computational design of molecular organic photocatalysts and other energy-relevant materials, such as organic electronics

    The pathogenesis of low pathogenicity H7 avian influenza viruses in chickens, ducks and turkeys

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian influenza (AI) viruses infect numerous avian species, and low pathogenicity (LP) AI viruses of the H7 subtype are typically reported to produce mild or subclinical infections in both wild aquatic birds and domestic poultry. However relatively little work has been done to compare LPAI viruses from different avian species for their ability to cause disease in domestic poultry under the same conditions. In this study twelve H7 LPAI virus isolates from North America were each evaluated for their comparative pathogenesis in chickens, ducks, and turkeys.</p> <p>Results</p> <p>All 12 isolates were able to infect all three species at a dose of 10<sup>6 </sup>50% egg infectious doses based on seroconversion, although not all animals seroconverted with each isolate-species combination. The severity of disease varied among isolate and species combinations, but there was a consistent trend for clinical disease to be most severe in turkeys where all 12 isolates induced disease, and mortality was observed in turkeys exposed to 9 of the 12 viruses. Turkeys also shed virus by the oral and cloacal routes at significantly higher titers than either ducks or chickens at numerous time points. Only 3 isolates induced observable clinical disease in ducks and only 6 isolates induced disease in chickens, which was generally very mild and did not result in mortality. Full genome sequence was completed for all 12 isolates and some isolates did have features consistent with adaptation to poultry (e.g. NA stalk deletions), however none of these features correlated with disease severity.</p> <p>Conclusions</p> <p>The data suggests that turkeys may be more susceptible to clinical disease from the H7 LPAI viruses included in this study than either chickens or ducks. However the severity of disease and degree of virus shed was not clearly correlated with any isolate or group of isolates, but relied on specific species and isolate combinations.</p

    Metagenomic analysis of the turkey gut RNA virus community

    Get PDF
    Viral enteric disease is an ongoing economic burden to poultry producers worldwide, and despite considerable research, no single virus has emerged as a likely causative agent and target for prevention and control efforts. Historically, electron microscopy has been used to identify suspect viruses, with many small, round viruses eluding classification based solely on morphology. National and regional surveys using molecular diagnostics have revealed that suspect viruses continuously circulate in United States poultry, with many viruses appearing concomitantly and in healthy birds. High-throughput nucleic acid pyrosequencing is a powerful diagnostic technology capable of determining the full genomic repertoire present in a complex environmental sample. We utilized the Roche/454 Life Sciences GS-FLX platform to compile an RNA virus metagenome from turkey flocks experiencing enteric disease. This approach yielded numerous sequences homologous to viruses in the BLAST nr protein database, many of which have not been described in turkeys. Our analysis of this turkey gut RNA metagenome focuses in particular on the turkey-origin members of the Picornavirales, the Caliciviridae, and the turkey Picobirnaviruses

    Hampered Foraging and Migratory Performance in Swans Infected with Low-Pathogenic Avian Influenza A Virus

    Get PDF
    It is increasingly acknowledged that migratory birds, notably waterfowl, play a critical role in the maintenance and spread of influenza A viruses. In order to elucidate the epidemiology of influenza A viruses in their natural hosts, a better understanding of the pathological effects in these hosts is required. Here we report on the feeding and migratory performance of wild migratory Bewick's swans (Cygnus columbianus bewickii Yarrell) naturally infected with low-pathogenic avian influenza (LPAI) A viruses of subtypes H6N2 and H6N8. Using information on geolocation data collected from Global Positioning Systems fitted to neck-collars, we show that infected swans experienced delayed migration, leaving their wintering site more than a month after uninfected animals. This was correlated with infected birds travelling shorter distances and fuelling and feeding at reduced rates. The data suggest that LPAI virus infections in wild migratory birds may have higher clinical and ecological impacts than previously recognised

    Chemical intervention in plant sugar signalling increases yield and resilience

    Get PDF
    The pressing global issue of food insecurity due to population growth, diminishing land and variable climate can only be addressed in agriculture by improving both maximum crop yield potential and resilience. Genetic modification is one potential solution, but has yet to achieve worldwide acceptance, particularly for crops such as wheat. Trehalose-6-phosphate (T6P), a central sugar signal in plants, regulates sucrose use and allocation, underpinning crop growth and development. Here we show that application of a chemical intervention strategy directly modulates T6P levels in planta. Plant-permeable analogues of T6P were designed and constructed based on a β€˜signalling-precursor’ concept for permeability, ready uptake and sunlight-triggered release of T6P in planta. We show that chemical intervention in a potent sugar signal increases grain yield, whereas application to vegetative tissue improves recovery and resurrection from drought. This technology offers a means to combine increases in yield with crop stress resilience. Given the generality of the T6P pathway in plants and other small-molecule signals in biology, these studies suggest that suitable synthetic exogenous small-molecule signal precursors can be used to directly enhance plant performance and perhaps other organism function

    Emergence and Genetic Variation of Neuraminidase Stalk Deletions in Avian Influenza Viruses

    Get PDF
    When avian influenza viruses (AIVs) are transmitted from their reservoir hosts (wild waterfowl and shorebirds) to domestic bird species, they undergo genetic changes that have been linked to higher virulence and broader host range. Common genetic AIV modifications in viral proteins of poultry isolates are deletions in the stalk region of the neuraminidase (NA) and additions of glycosylation sites on the hemagglutinin (HA). Even though these NA deletion mutations occur in several AIV subtypes, they have not been analyzed comprehensively. In this study, 4,920 NA nucleotide sequences, 5,596 HA nucleotide and 4,702 HA amino acid sequences were analyzed to elucidate the widespread emergence of NA stalk deletions in gallinaceous hosts, the genetic polymorphism of the deletion patterns and association between the stalk deletions in NA and amino acid variants in HA. Forty-seven different NA stalk deletion patterns were identified in six NA subtypes, N1–N3 and N5–N7. An analysis that controlled for phylogenetic dependence due to shared ancestry showed that NA stalk deletions are statistically correlated with gallinaceous hosts and certain amino acid features on the HA protein. Those HA features included five glycosylation sites, one insertion and one deletion. The correlations between NA stalk deletions and HA features are HA-NA-subtype-specific. Our results demonstrate that stalk deletions in the NA proteins of AIV are relatively common. Understanding the NA stalk deletion and related HA features may be important for vaccine and drug development and could be useful in establishing effective early detection and warning systems for the poultry industry

    MicroRNA Regulation of Human Protease Genes Essential for Influenza Virus Replication

    Get PDF
    Influenza A virus causes seasonal epidemics and periodic pandemics threatening the health of millions of people each year. Vaccination is an effective strategy for reducing morbidity and mortality, and in the absence of drug resistance, the efficacy of chemoprophylaxis is comparable to that of vaccines. However, the rapid emergence of drug resistance has emphasized the need for new drug targets. Knowledge of the host cell components required for influenza replication has been an area targeted for disease intervention. In this study, the human protease genes required for influenza virus replication were determined and validated using RNA interference approaches. The genes validated as critical for influenza virus replication were ADAMTS7, CPE, DPP3, MST1, and PRSS12, and pathway analysis showed these genes were in global host cell pathways governing inflammation (NF-ΞΊB), cAMP/calcium signaling (CRE/CREB), and apoptosis. Analyses of host microRNAs predicted to govern expression of these genes showed that eight miRNAs regulated gene expression during virus replication. These findings identify unique host genes and microRNAs important for influenza replication providing potential new targets for disease intervention strategies
    corecore