32 research outputs found

    Toward targeting B cell cancers with CD4+ CTLs: identification of a CD19-encoded minor histocompatibility antigen using a novel genome-wide analysis

    Get PDF
    Some minor histocompatibility antigens (mHags) are expressed exclusively on patient hematopoietic and malignant cells, and this unique set of antigens enables specific targeting of hematological malignancies after human histocompatability leucocyte antigen (HLA)–matched allogeneic stem cell transplantation (allo-SCT). We report the first hematopoietic mHag presented by HLA class II (HLA-DQA1*05/B1*02) molecules to CD4+ T cells. This antigen is encoded by a single-nucleotide polymorphism (SNP) in the B cell lineage-specific CD19 gene, which is an important target antigen for immunotherapy of most B cell malignancies. The CD19L-encoded antigen was identified using a novel and powerful genetic strategy in which zygosity-genotype correlation scanning was used as the key step for fine mapping the genetic locus defined by pairwise linkage analysis. This strategy was also applicable for genome-wide identification of a wide range of mHags. CD19L-specific CD4+ T cells provided antigen-specific help for maturation of dendritic cells and for expansion of CD8+ mHag-specific T cells. They also lysed CD19L-positive malignant cells, illustrating the potential therapeutic advantages of targeting this novel CD19L-derived HLA class II–restricted mHag. The currently available immunotherapy strategies enable the exploitation of these therapeutic effects within and beyond allo-SCT settings

    Human B Cells Engage the NCK/PI3K/RAC1 Axis to Internalize Large Particles via the IgM-BCR

    Get PDF
    Growing evidence indicate that large antigen-containing particles induce potent T cell-dependent high-affinity antibody responses. These responses require large particle internalization after recognition by the B cell receptor (BCR) on B cells. However, the molecular mechanisms governing BCR-mediated internalization remain unclear. Here we use a high-throughput quantitative image analysis approach to discriminate between B cell particle binding and internalization. We systematically show, using small molecule inhibitors, that human B cells require a SYK-dependent IgM-BCR signaling transduction via PI3K to efficiently internalize large anti-IgM-coated particles. IgM-BCR-mediated activation of PI3K involves both the adaptor protein NCK and the co-receptor CD19. Interestingly, we here reveal a strong NCK-dependence without profound requirement of the co-receptor CD19 in B cell responses to large particles. Furthermore, we demonstrate that the IgM-BCR/NCK signaling event facilitates RAC1 activation to promote actin cytoskeleton remodeling necessary for particle engulfment. Thus, we establish NCK/PI3K/RAC1 as an attractive IgM-BCR signaling axis for biological intervention to prevent undesired antibody responses to large particles

    The Connection Between Minor H Antigens and Neoantigens and the Missing Link in Their Prediction

    No full text
    For hundreds of thousands of years, the human genome has extensively evolved, resulting in genetic variations in almost every gene. Immunological reflections of these genetic variations become clearly visible after an allogeneic stem cell transplantation (allo-SCT) as minor Histocompatibility (H) antigens. Minor H antigens are peptides cleaved from genetically encoded variable protein regions after which they are presented at the cell surface by HLA molecules. After allo-SCT with minor H antigen mismatches between donor and recipient, donor T cells recognize the minor H antigens of the recipient as foreign, evoking strong alloreactive immune responses. Studies in the late eighties have discovered that a subset of minor H antigens are encoded by hematopoietic system-specific genes. After allo-SCT, this subset is strictly expressed on the hematopoietic malignant cells and was therefore the first well-defined highly immunogenic group of tumor-specific antigens. In the last decade, neoantigens derived from genetic mutations in tumors have been identified as another group of immunogenic tumor-specific antigens. Therefore, hematopoietic minor H antigens and neoantigens are therapeutic equivalents. This review will connect our current knowledge about the immune biology and identification of minor H antigens and neoantigens leading to novel conclusions on their prediction

    Secretome screening reveals fibroblast growth factors as novel inhibitors of viral replication

    No full text
    Cellular antiviral programs can efficiently inhibit viral infection. These programs are often initiated through signaling cascades induced by secreted proteins, such as type I interferons, interleukin-6 (IL-6), or tumor necrosis factor alpha (TNF-α). In the present study, we generated an arrayed library of 756 human secreted proteins to perform a secretome screen focused on the discovery of novel modulators of viral entry and/or replication. The individual secreted proteins were tested for the capacity to inhibit infection by two replication-competent recombinant vesicular stomatitis viruses (VSVs) with distinct glycoproteins utilizing different entry pathways. Fibroblast growth factor 16 (FGF16) was identified and confirmed as the most prominent novel inhibitor of both VSVs and therefore of viral replication, not entry. Importantly, an antiviral interferon signature was completely absent in FGF16-treated cells. Nevertheless, the antiviral effect of FGF16 is broad, as it was evident on multiple cell types and also on infection by coxsackievirus. In addition, other members of the FGF family also inhibited viral infection. Thus, our unbiased secretome screen revealed a novel protein family capable of inducing a cellular antiviral state. This previously unappreciated role of the FGF family may have implications for the development of new antivirals and the efficacy of oncolytic virus therapy

    Viral immune evasins impact antigen presentation by allele-specific trapping of MHC I at the peptide-loading complex

    No full text
    Major histocompatibility complex class I (MHC I) molecules present antigenic peptides to cytotoxic T cells to eliminate infected or cancerous cells. The transporter associated with antigen processing (TAP) shuttles proteasomally generated peptides into the ER for MHC I loading. As central part of the peptide-loading complex (PLC), TAP is targeted by viral factors, which inhibit peptide supply and thereby impact MHC I-mediated immune responses. However, it is still poorly understood how antigen presentation via different MHC I allotypes is affected by TAP inhibition. Here, we show that conditional expression of herpes simplex viral ICP47 suppresses surface presentation of HLA-A and HLA-C, but not of HLA-B, while the human cytomegaloviral US6 reduces surface levels of all MHC I allotypes. This marked difference in HLA-B antigen presentation is echoed by an enrichment of HLA-B allomorphs at US6-arrested PLC in comparison to ICP47-PLC. Although both viral factors prevent TAP-mediated peptide supply, our data imply that MHC I allomorphs favor different conformationally arrested states of the PLC, leading to differential downregulation of MHC I surface presentation. These findings will help understand MHC I biology in general and will even advance the targeted treatment of infections depending on patients’ allotypes

    Structure of an MHC I–tapasin–ERp57 editing complex defines chaperone promiscuity

    No full text
    Adaptive immunity depends on cell surface presentation of antigenic peptides by major histocompatibility complex class I (MHC I) molecules and on stringent ER quality control in the secretory pathway. The chaperone tapasin in conjunction with the oxidoreductase ERp57 is crucial for MHC I assembly and for shaping the epitope repertoire for high immunogenicity. However, how the tapasin–ERp57 complex engages MHC I clients has not yet been determined at atomic detail. Here, we present the 2.7-Å crystal structure of a tapasin–ERp57 heterodimer in complex with peptide-receptive MHC I. Our study unveils molecular details of client recognition by the multichaperone complex and highlights elements indispensable for peptide proofreading. The structure of this transient ER quality control complex provides the mechanistic basis for the selector function of tapasin and showcases how the numerous MHC I allomorphs are chaperoned during peptide loading and editing

    An unexplored angle: T cell antigen discoveries reveal a marginal contribution of proteasome splicing to the immunogenic MHC class I antigen pool

    No full text
    In the current era of T cell-based immunotherapies, it is crucial to understand which types of MHC-presented T cell antigens are produced by tumor cells. In addition to linear peptide antigens, chimeric peptides are generated through proteasome-catalyzed peptide splicing (PCPS). Whether such spliced peptides are abundantly presented by MHC is highly disputed because of disagreement in computational analyses of mass spectrometry data of MHC-eluted peptides. Moreover, such mass spectrometric analyses cannot elucidate how much spliced peptides contribute to the pool of immunogenic antigens. In this Perspective, we explain the significance of knowing the contribution of spliced peptides for accurate analyses of peptidomes on one hand, and to serve as a potential source of targetable tumor antigens on the other hand. Toward a strategy for mass spectrometry independent estimation of the contribution of PCPS to the immunopeptidome, we first reviewed methodologies to identify MHC-presented spliced peptide antigens expressed by tumors. Data from these identifications allowed us to compile three independent datasets containing 103, 74, and 83 confirmed T cell antigens from cancer patients. Only 3.9%, 1.4%, and between 0% and 7.2% of these truly immunogenic antigens are produced by PCPS, therefore providing a marginal contribution to the pool of immunogenic tumor antigens. We conclude that spliced peptides will not serve as a comprehensive source to expand the number of targetable antigens for immunotherapies

    Structure of an MHC I-tapasin-ERp57 editing complex defines chaperone promiscuity

    No full text
    Adaptive immunity depends on cell surface presentation of antigenic peptides by major histocompatibility complex class I (MHC I) molecules and on stringent ER quality control in the secretory pathway. The chaperone tapasin in conjunction with the oxidoreductase ERp57 is crucial for MHC I assembly and for shaping the epitope repertoire for high immunogenicity. However, how the tapasin-ERp57 complex engages MHC I clients has not yet been determined at atomic detail. Here, we present the 2.7-Ă… crystal structure of a tapasin-ERp57 heterodimer in complex with peptide-receptive MHC I. Our study unveils molecular details of client recognition by the multichaperone complex and highlights elements indispensable for peptide proofreading. The structure of this transient ER quality control complex provides the mechanistic basis for the selector function of tapasin and showcases how the numerous MHC I allomorphs are chaperoned during peptide loading and editing

    CRISPR/Cas9 generated human CD46, CD55 and CD59 knockout cell lines as a tool for complement research

    No full text
    To prevent unwanted complement activation and subsequent damage, complement activation must be tightly regulated on healthy host cells. Dysregulation of the complement system contributes to the pathology of diseases like Paroxysmal Nocturnal Hemoglobinuria and atypical Hemolytic Uremic Syndrome. To investigate complement regulator deficiencies, primary patient cells may be used, but access to patient cells may be limited and cells are heterogeneous between different patients. To inhibit regulator function on healthy host cells, blocking antibodies can be used, though it may be difficult to exclude antibody-mediated effects. To circumvent these issues, we created single and combined complement regulator human knockout cells to be able to in vitro investigate complement activation and regulation on human cells. CRISPR/Cas9 was used to knockout (KO) complement regulatory proteins CD46, CD55 and/or CD59 in human HAP1 cells. Single cell derived cell lines were profiled by Sanger sequencing and flow cytometry. To confirm the lack of complement regulatory function, the cells were exposed to complement in normal human serum and subsequently C3 and C4 deposition on the cell surface were detected by using flow cytometry. We created single KO cell lines that completely lacked CD46, CD55 or CD59. We additionally generated double CD46/CD55, CD46/CD59 and CD55/CD59 KOs and triple CD46/CD55/CD59 KOs. Upon classical pathway activation, deletion of CD46 resulted in increased C3 and C4 deposition, while deleting CD55 mainly resulted to increased C3 deposition, confirming their reported function in complement regulation. Upon alternative pathway activation, C3 deposition was only observed on the triple CD46/CD55/CD59 KO cells and not on any of the other cell lines, suggesting that human cells are resistant to spontaneous complement activation and suggesting a role for CD59 in C3 regulation. The generation of complement regulator KO cell lines provides a relevant tool for future in vitro investigations of complement activation and regulation on human cells. Furthermore, these cell lines may also be helpful to evaluate therapeutic complement inhibitors and may shed light on novel roles of complement regulatory proteins as we here observed for CD5

    Functional Characteristics of the High Affinity IgG Receptor, Fc gamma RI

    No full text
    IgG FcRs are important mediators of immunity and play a key role during Ab-based immunotherapy. Within the leukocyte IgG receptor family, only Fc gamma RI is capable of IgG binding with high affinity. Fc gamma RI exists as a complex of a ligand binding a-chain and an FcR gamma-chain. The receptors' alpha-chain can, furthermore, elicit several functions independent of the ITAM-bearing FcR gamma-chain. Functional implications of high-affinity IgG binding and mechanisms underlying FcR gamma-chain-independent signaling remain unclear to this day. In this paper, we provide an overview of past literature on Fc gamma RI and address the implications of recently described interactions between cytosolic proteins and the Fc gamma RI alpha-chain, as well as cytokine-enhanced Fc gamma RI immune complex binding. Furthermore, an analysis of potential polymorphisms within the FCGR1A gene is provided. The Journal of Immunology, 2011, 186: 2699-2704
    corecore